olmocr/pdelfin/eval/runeval.py

294 lines
11 KiB
Python
Raw Normal View History

# This script will build a set of scores for the accuracy of a given pdf conversion tactic against a gold dataset
#
# You might need to pip install git+https://github.com/allenai/refine.git@soldni/eval-m
# in order to use some of the existing aligner scoring that was developed as part
# of the refiner pipeline
import boto3
import os
import json
import hashlib
import random
import zstandard
import sys
2024-10-01 16:46:35 +00:00
import argparse
2024-10-02 19:51:15 +00:00
from dataclasses import dataclass
from typing import Optional
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
from pathlib import Path
from smart_open import smart_open, register_compressor
from dolma_refine.evaluate.metrics import DocumentEditSimilarity
from dolma_refine.evaluate.segmenters import SpacySegmenter
from dolma_refine.evaluate.aligners import HirschbergAligner
from .evalhtml import create_review_html
CACHE_DIR = os.path.join(Path.home(), ".cache", "pdf_gold_data_cache")
s3_client = boto3.client('s3')
def _handle_zst(file_obj, mode):
return zstandard.open(file_obj, mode)
register_compressor(".zstd", _handle_zst)
register_compressor(".zst", _handle_zst)
# Helper function to download files from S3
def download_from_s3(s3_path: str, local_path: str):
bucket_name, key = s3_path.replace("s3://", "").split("/", 1)
s3_client.download_file(bucket_name, key, local_path)
def is_debugging():
return sys.gettrace() is not None
# Create a hash to store file contents and check for changes
def compute_file_hash(file_path: str) -> str:
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
2024-10-02 19:51:15 +00:00
# A single method which can take in any format json entry (openai regular, openai structured, birr)
# and normalize it to a common structure for use later in the
@dataclass(frozen=True)
class NormalizedEntry:
s3_path: str
pagenum: int
text: str
finish_reason: Optional[str]
@staticmethod
def from_goldkey(goldkey: str, **kwargs):
s3_path = goldkey[:goldkey.rindex("-")]
page_num = int(goldkey[goldkey.rindex("-") + 1:])
return NormalizedEntry(s3_path, page_num, **kwargs)
@property
def goldkey(self):
return f"{self.s3_path}-{self.pagenum}"
def normalize_json_entry(data: dict) -> NormalizedEntry:
if "custom_id" in data:
# OpenAI case
try:
# Attempt to parse the JSON content from OpenAI's response
parsed_content = json.loads(data["response"]["body"]["choices"][0]["message"]["content"])
return NormalizedEntry.from_goldkey(
goldkey=data["custom_id"],
text=parsed_content["natural_text"],
finish_reason=data["response"]["body"]["choices"][0]["finish_reason"]
)
except json.JSONDecodeError:
# Fallback if content is not valid JSON
return NormalizedEntry.from_goldkey(
goldkey=data["custom_id"],
text=data["response"]["body"]["choices"][0]["message"]["content"],
finish_reason=data["response"]["body"]["choices"][0]["finish_reason"]
)
else:
# Birr case
text = data["outputs"][0]["text"]
return NormalizedEntry(
s3_path=data["s3_path"],
pagenum=data["page"],
text=text,
finish_reason=data["outputs"][0]["finish_reason"]
)
# Load every .json file from GOLD_DATA_S3_PATH (and saves it to some temp folder for quick loading next time)
# returns map from "custom_id" ex. "s3://ai2-s2-pdfs/39ce/3db4516cd6e7d7f8e580a494c7a665a6a16a.pdf-4" (where the -4 means page 4)
# to the gold standard text
def load_gold_data(gold_data_path: str) -> dict:
if not os.path.exists(CACHE_DIR):
os.makedirs(CACHE_DIR)
gold_data = {}
2024-10-01 16:46:35 +00:00
gold_jsonl_files = list_jsonl_files(gold_data_path)
for path in gold_jsonl_files:
# Load the JSON file
with smart_open(path, 'r') as f:
for line in f:
data = json.loads(line)
2024-10-02 19:51:15 +00:00
data = normalize_json_entry(data)
gold_data[data.goldkey] = data.text
print(f"Loaded {len(gold_data):,} gold data entries for comparison")
return gold_data
# Helper function to list all .jsonl files from a directory or an S3 bucket
def list_jsonl_files(path: str) -> list:
valid_endings = [".json", ".jsonl", ".json.zstd", ".jsonl.zstd"]
jsonl_files = []
if path.startswith("s3://"):
bucket_name, prefix = path.replace("s3://", "").split("/", 1)
paginator = s3_client.get_paginator('list_objects_v2')
pages = paginator.paginate(Bucket=bucket_name, Prefix=prefix)
for page in pages:
for obj in page.get('Contents', []):
if any(obj['Key'].endswith(ending) for ending in valid_endings):
jsonl_files.append(f"s3://{bucket_name}/{obj['Key']}")
else:
# If it's a local directory, list all .jsonl files
for root, _, files in os.walk(path):
for file in files:
if any(file.endswith(ending) for ending in valid_endings):
jsonl_files.append(os.path.join(root, file))
return jsonl_files
# Takes in a path to a local directory or s3://[bucket]/[prefix path] where your jsonl files are stored
# This is most likely the output location of the refiner
# Expecting each jsonl line to include {s3_path: [path to original pdf], page: [pagenum], text: [proper page text]}
# Returns the average Levenshtein distance match between the data
def process_jsonl_file(jsonl_file, gold_data, comparer):
page_data = {}
total_alignment_score = 0
char_weighted_alignment_score = 0
total_pages = 0
total_chars = 0
with smart_open(jsonl_file, 'r') as f:
for line in f:
data = json.loads(line)
2024-10-02 19:51:15 +00:00
data = normalize_json_entry(data)
2024-10-02 19:51:15 +00:00
if data.goldkey not in gold_data:
continue
2024-10-02 19:51:15 +00:00
gold_text = gold_data[data.goldkey]
eval_text = data.text
2024-10-02 19:51:15 +00:00
gold_text = gold_text or ""
eval_text = eval_text or ""
# If the eval text or gold text is empty, we skip this page and don't use it for comparison
# It means that something was an OCR page, and the text-based pipeline just won't be able to handle that
2024-10-02 19:51:15 +00:00
# if len(eval_text.strip()) < 10 or len(gold_text.strip()) < 10:
# continue
alignment = comparer.compute(gold_text, eval_text)
2024-10-02 19:51:15 +00:00
page_data[data.goldkey] = {
"s3_path": data.s3_path,
"page": data.pagenum,
"gold_text": gold_text,
"eval_text": eval_text,
"alignment": alignment
}
total_alignment_score += alignment
char_weighted_alignment_score += alignment * len(gold_text)
total_chars += len(gold_text)
total_pages += 1
return total_alignment_score, char_weighted_alignment_score, total_chars, total_pages, page_data
def do_eval(gold_data_path: str, eval_data_path: str, review_page_name: str, review_page_size: int) -> tuple[float, list[dict]]:
gold_data = load_gold_data(gold_data_path)
total_alignment_score = 0
total_weight = 0
total_pages_compared = set()
page_eval_data = []
segmenter = SpacySegmenter("spacy")
aligner = HirschbergAligner(match_score=1,
mismatch_score=-1,
indel_score=-1)
comparer = DocumentEditSimilarity(segmenter=segmenter, aligner=aligner)
# List all .jsonl files in the directory or S3 bucket
jsonl_files = list_jsonl_files(eval_data_path)
if not jsonl_files:
raise ValueError("No .jsonl files found in the specified path.")
print(f"Found {len(jsonl_files):,} files to evaluate")
with ProcessPoolExecutor() if not is_debugging() else ThreadPoolExecutor() as executor:
# Prepare the future tasks
futures = [executor.submit(process_jsonl_file, jsonl_file, gold_data, comparer) for jsonl_file in jsonl_files]
# Process each future as it completes
for future in tqdm(as_completed(futures), total=len(jsonl_files)):
alignment_score, char_weighted_score, chars, pages, page_data = future.result() # Get the result of the completed task
# Aggregate statistics
total_alignment_score += char_weighted_score
total_weight += chars
total_pages_compared |= page_data.keys()
# Generate the eval data
for pd_key, pd in page_data.items():
# if pd["alignment"] > 0.97:
# continue
2024-10-01 16:46:35 +00:00
# if len(pd["gold_text"]) < 200 and len(pd["eval_text"]) < 200:
# continue
page_eval_data.append(pd)
2024-10-01 16:46:35 +00:00
print(f"Compared {len(total_pages_compared):,} pages")
print(f"Total corpus alignment: {total_alignment_score:.2f}")
print(f"Mean alignment: {total_alignment_score / total_weight:.3f}")
2024-10-01 19:59:48 +00:00
print("")
2024-10-01 16:46:35 +00:00
print("...creating review page")
2024-10-01 19:59:48 +00:00
# TODO Temporary filter to see other stuff
#page_eval_data = [x for x in page_eval_data if "NO ENGLISH TEXT" not in x["gold_text"]]
# Select the top 20 lowest alignments
2024-10-01 16:46:35 +00:00
page_eval_data.sort(key=lambda x: x["alignment"])
create_review_html(page_eval_data[:review_page_size], filename=review_page_name + "_worst.html")
# Select random entries to return in the page_eval_data
page_eval_data = random.sample(page_eval_data, review_page_size)
create_review_html(page_eval_data, filename=review_page_name + "_sample.html")
return total_alignment_score / total_weight, page_eval_data
if __name__ == "__main__":
2024-10-01 16:46:35 +00:00
parser = argparse.ArgumentParser(
description="Transform JSONL files by extracting and renaming specific fields."
)
parser.add_argument(
'--name',
default="review_page",
help="What name to give to this evaluation/comparison"
)
parser.add_argument(
'--review_size',
default=20,
type=int,
help="Number of entries to show on the generated review page",
)
2024-10-01 16:46:35 +00:00
parser.add_argument(
'gold_data_path',
type=str,
help='Path to the gold data directory containing JSONL files. Can be a local path or S3 URL. Can be openai "done" data, or birr "done" data'
)
parser.add_argument(
'eval_data_path',
type=str,
help='Path to the eval data directory containing JSONL files. Can be a local path or S3 URL. Can be openai "done" data, or birr "done" data'
)
args = parser.parse_args()
result = do_eval(gold_data_path=args.gold_data_path, eval_data_path=args.eval_data_path, review_page_name=args.name, review_page_size=args.review_size)