mirror of
https://github.com/allenai/olmocr.git
synced 2025-10-03 20:34:09 +00:00
New ELO building stuff finished up I think
This commit is contained in:
parent
50464c1057
commit
18f72b4e1b
@ -3,6 +3,8 @@ import boto3
|
||||
import dataclasses
|
||||
import random
|
||||
import re
|
||||
from concurrent.futures import ProcessPoolExecutor, as_completed
|
||||
import functools
|
||||
|
||||
from tqdm import tqdm
|
||||
from itertools import combinations
|
||||
@ -13,18 +15,13 @@ from dolma_refine.evaluate.aligners import HirschbergAligner
|
||||
|
||||
from pdelfin.eval.evalhtml import create_review_html
|
||||
|
||||
s3_client = boto3.client('s3')
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Comparison:
|
||||
pdf_path: str
|
||||
|
||||
comparison_a_path: str
|
||||
comparison_b_path: str
|
||||
|
||||
comparison_a_str: str
|
||||
comparison_b_str: str
|
||||
|
||||
alignment: float
|
||||
|
||||
@property
|
||||
@ -35,7 +32,48 @@ class Comparison:
|
||||
def comparison_b_method(self):
|
||||
return re.search(r'page[0-9]+_(\w+)\.md$', self.comparison_b_path).group(1)
|
||||
|
||||
def build_review_page(args, comparisons):
|
||||
def process_single_pdf(pdf_path, all_mds, comparisons, segmenter_name="spacy"):
|
||||
"""Process a single PDF and return its comparisons."""
|
||||
# Create resources inside the worker process
|
||||
s3_client = boto3.client('s3')
|
||||
segmenter = SpacySegmenter(segmenter_name)
|
||||
aligner = HirschbergAligner(match_score=1,
|
||||
mismatch_score=-1,
|
||||
indel_score=-1)
|
||||
comparer = DocumentEditSimilarity(segmenter=segmenter, aligner=aligner)
|
||||
|
||||
pdf_comps = []
|
||||
result_comps = []
|
||||
|
||||
# Get all comparison files for this PDF
|
||||
for comp in comparisons:
|
||||
comp_path = pdf_path.replace(".pdf", f"_{comp}.md")
|
||||
if comp_path in all_mds:
|
||||
pdf_comps.append(comp_path)
|
||||
|
||||
# Generate all possible combinations
|
||||
for (compa, compb) in combinations(pdf_comps, 2):
|
||||
if random.choice([True, False]):
|
||||
compa, compb = compb, compa
|
||||
|
||||
# Get the text content
|
||||
text_a = get_s3_bytes(s3_client, compa).decode("utf-8")
|
||||
text_b = get_s3_bytes(s3_client, compb).decode("utf-8")
|
||||
|
||||
result_comps.append(
|
||||
Comparison(
|
||||
pdf_path=pdf_path,
|
||||
comparison_a_path=compa,
|
||||
comparison_b_path=compb,
|
||||
comparison_a_str=text_a,
|
||||
comparison_b_str=text_b,
|
||||
alignment=comparer.compute(text_a, text_b)
|
||||
)
|
||||
)
|
||||
|
||||
return result_comps
|
||||
|
||||
def build_review_page(args, comparisons, index=0):
|
||||
page_data = []
|
||||
|
||||
for comp in comparisons:
|
||||
@ -50,7 +88,8 @@ def build_review_page(args, comparisons):
|
||||
"alignment": comp.alignment
|
||||
})
|
||||
|
||||
create_review_html(page_data, args.name + ".html")
|
||||
report_name = f"{args.name}{f'_{index}' if args.num_copies > 1 else ''}.html"
|
||||
create_review_html(page_data, report_name)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
@ -67,11 +106,23 @@ if __name__ == "__main__":
|
||||
type=int,
|
||||
help="Number of entries to show on the generated review page",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--max_workers',
|
||||
type=int,
|
||||
default=None,
|
||||
help="Maximum number of worker processes to use for parallel processing",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--comparisons',
|
||||
default=["pdelf", "gotocr", "gotocr_format", "mineru"],
|
||||
default=["pdelf", "marker", "gotocr_format", "mineru"],
|
||||
help="Different variants to compare against"
|
||||
)
|
||||
parser.add_argument(
|
||||
'--num_copies',
|
||||
default=1,
|
||||
type=int,
|
||||
help="Number of reports to generate, labeled _0, _1, etc. if greater than 1",
|
||||
)
|
||||
parser.add_argument(
|
||||
's3_path',
|
||||
type=str,
|
||||
@ -80,47 +131,50 @@ if __name__ == "__main__":
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
segmenter = SpacySegmenter("spacy")
|
||||
aligner = HirschbergAligner(match_score=1,
|
||||
mismatch_score=-1,
|
||||
indel_score=-1)
|
||||
comparer = DocumentEditSimilarity(segmenter=segmenter, aligner=aligner)
|
||||
|
||||
all_comps = []
|
||||
# Create S3 client only for initial file listing
|
||||
s3_client = boto3.client('s3')
|
||||
|
||||
# Get all PDFs and MD files
|
||||
all_pdfs = set(expand_s3_glob(s3_client, args.s3_path + "/*.pdf"))
|
||||
all_mds = set(expand_s3_glob(s3_client, args.s3_path + "/*.md"))
|
||||
|
||||
for pdf_path in tqdm(all_pdfs):
|
||||
pdf_comps = []
|
||||
for comp in args.comparisons:
|
||||
comp_path = pdf_path.replace(".pdf", f"_{comp}.md")
|
||||
if comp_path in all_mds:
|
||||
pdf_comps.append(comp_path)
|
||||
|
||||
for (compa, compb) in combinations(pdf_comps, 2):
|
||||
if random.choice([True, False]):
|
||||
compa, compb = compb, compa
|
||||
|
||||
text_a = get_s3_bytes(s3_client, compa).decode("utf-8")
|
||||
text_b = get_s3_bytes(s3_client, compb).decode("utf-8")
|
||||
|
||||
all_comps.append(
|
||||
Comparison(pdf_path=pdf_path,
|
||||
comparison_a_path=compa,
|
||||
comparison_b_path=compb,
|
||||
comparison_a_str=text_a,
|
||||
comparison_b_str=text_b,
|
||||
alignment=comparer.compute(text_a, text_b)
|
||||
)
|
||||
)
|
||||
|
||||
# if len(all_comps) > 1000:
|
||||
# break
|
||||
|
||||
# Sorting by alignment score is problemetic, because it only returns completely pathological parses
|
||||
# And we miss cases where the parse is similar, but one thing hallucinated a word or two, etc.
|
||||
#all_comps.sort(key=lambda c: c.alignment)
|
||||
all_comps = []
|
||||
|
||||
# Create a partial function with all the common arguments
|
||||
process_pdf = functools.partial(
|
||||
process_single_pdf,
|
||||
all_mds=all_mds,
|
||||
comparisons=args.comparisons
|
||||
)
|
||||
|
||||
# Use ProcessPoolExecutor for parallel processing
|
||||
with ProcessPoolExecutor(max_workers=args.max_workers) as executor:
|
||||
# Submit all PDF processing tasks
|
||||
future_to_pdf = {
|
||||
executor.submit(process_pdf, pdf_path): pdf_path
|
||||
for pdf_path in all_pdfs
|
||||
}
|
||||
|
||||
# Process results as they complete using tqdm for progress
|
||||
for future in tqdm(as_completed(future_to_pdf), total=len(all_pdfs)):
|
||||
pdf_path = future_to_pdf[future]
|
||||
try:
|
||||
pdf_results = future.result()
|
||||
all_comps.extend(pdf_results)
|
||||
except Exception as e:
|
||||
print(f"Error processing {pdf_path}: {str(e)}")
|
||||
|
||||
# Shuffle the results
|
||||
random.shuffle(all_comps)
|
||||
|
||||
result = build_review_page(args, all_comps[0:args.review_size])
|
||||
# Generate the specified number of copies of the report
|
||||
for i in range(args.num_copies):
|
||||
start_index = i * args.review_size
|
||||
end_index = start_index + args.review_size
|
||||
|
||||
# Check if there is enough data for the next report
|
||||
if start_index >= len(all_comps):
|
||||
print(f"Not enough data to generate report {i}. Stopping early.")
|
||||
break
|
||||
|
||||
build_review_page(args, all_comps[start_index:end_index], index=i)
|
Loading…
x
Reference in New Issue
Block a user