New ELO building stuff finished up I think

This commit is contained in:
Jake Poznanski 2025-01-16 00:22:29 +00:00
parent 50464c1057
commit 18f72b4e1b

View File

@ -3,6 +3,8 @@ import boto3
import dataclasses
import random
import re
from concurrent.futures import ProcessPoolExecutor, as_completed
import functools
from tqdm import tqdm
from itertools import combinations
@ -13,18 +15,13 @@ from dolma_refine.evaluate.aligners import HirschbergAligner
from pdelfin.eval.evalhtml import create_review_html
s3_client = boto3.client('s3')
@dataclasses.dataclass
class Comparison:
pdf_path: str
comparison_a_path: str
comparison_b_path: str
comparison_a_str: str
comparison_b_str: str
alignment: float
@property
@ -35,7 +32,48 @@ class Comparison:
def comparison_b_method(self):
return re.search(r'page[0-9]+_(\w+)\.md$', self.comparison_b_path).group(1)
def build_review_page(args, comparisons):
def process_single_pdf(pdf_path, all_mds, comparisons, segmenter_name="spacy"):
"""Process a single PDF and return its comparisons."""
# Create resources inside the worker process
s3_client = boto3.client('s3')
segmenter = SpacySegmenter(segmenter_name)
aligner = HirschbergAligner(match_score=1,
mismatch_score=-1,
indel_score=-1)
comparer = DocumentEditSimilarity(segmenter=segmenter, aligner=aligner)
pdf_comps = []
result_comps = []
# Get all comparison files for this PDF
for comp in comparisons:
comp_path = pdf_path.replace(".pdf", f"_{comp}.md")
if comp_path in all_mds:
pdf_comps.append(comp_path)
# Generate all possible combinations
for (compa, compb) in combinations(pdf_comps, 2):
if random.choice([True, False]):
compa, compb = compb, compa
# Get the text content
text_a = get_s3_bytes(s3_client, compa).decode("utf-8")
text_b = get_s3_bytes(s3_client, compb).decode("utf-8")
result_comps.append(
Comparison(
pdf_path=pdf_path,
comparison_a_path=compa,
comparison_b_path=compb,
comparison_a_str=text_a,
comparison_b_str=text_b,
alignment=comparer.compute(text_a, text_b)
)
)
return result_comps
def build_review_page(args, comparisons, index=0):
page_data = []
for comp in comparisons:
@ -50,7 +88,8 @@ def build_review_page(args, comparisons):
"alignment": comp.alignment
})
create_review_html(page_data, args.name + ".html")
report_name = f"{args.name}{f'_{index}' if args.num_copies > 1 else ''}.html"
create_review_html(page_data, report_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
@ -67,11 +106,23 @@ if __name__ == "__main__":
type=int,
help="Number of entries to show on the generated review page",
)
parser.add_argument(
'--max_workers',
type=int,
default=None,
help="Maximum number of worker processes to use for parallel processing",
)
parser.add_argument(
'--comparisons',
default=["pdelf", "gotocr", "gotocr_format", "mineru"],
default=["pdelf", "marker", "gotocr_format", "mineru"],
help="Different variants to compare against"
)
parser.add_argument(
'--num_copies',
default=1,
type=int,
help="Number of reports to generate, labeled _0, _1, etc. if greater than 1",
)
parser.add_argument(
's3_path',
type=str,
@ -80,47 +131,50 @@ if __name__ == "__main__":
args = parser.parse_args()
segmenter = SpacySegmenter("spacy")
aligner = HirschbergAligner(match_score=1,
mismatch_score=-1,
indel_score=-1)
comparer = DocumentEditSimilarity(segmenter=segmenter, aligner=aligner)
all_comps = []
# Create S3 client only for initial file listing
s3_client = boto3.client('s3')
# Get all PDFs and MD files
all_pdfs = set(expand_s3_glob(s3_client, args.s3_path + "/*.pdf"))
all_mds = set(expand_s3_glob(s3_client, args.s3_path + "/*.md"))
for pdf_path in tqdm(all_pdfs):
pdf_comps = []
for comp in args.comparisons:
comp_path = pdf_path.replace(".pdf", f"_{comp}.md")
if comp_path in all_mds:
pdf_comps.append(comp_path)
for (compa, compb) in combinations(pdf_comps, 2):
if random.choice([True, False]):
compa, compb = compb, compa
text_a = get_s3_bytes(s3_client, compa).decode("utf-8")
text_b = get_s3_bytes(s3_client, compb).decode("utf-8")
all_comps.append(
Comparison(pdf_path=pdf_path,
comparison_a_path=compa,
comparison_b_path=compb,
comparison_a_str=text_a,
comparison_b_str=text_b,
alignment=comparer.compute(text_a, text_b)
)
)
# if len(all_comps) > 1000:
# break
# Sorting by alignment score is problemetic, because it only returns completely pathological parses
# And we miss cases where the parse is similar, but one thing hallucinated a word or two, etc.
#all_comps.sort(key=lambda c: c.alignment)
all_comps = []
# Create a partial function with all the common arguments
process_pdf = functools.partial(
process_single_pdf,
all_mds=all_mds,
comparisons=args.comparisons
)
# Use ProcessPoolExecutor for parallel processing
with ProcessPoolExecutor(max_workers=args.max_workers) as executor:
# Submit all PDF processing tasks
future_to_pdf = {
executor.submit(process_pdf, pdf_path): pdf_path
for pdf_path in all_pdfs
}
# Process results as they complete using tqdm for progress
for future in tqdm(as_completed(future_to_pdf), total=len(all_pdfs)):
pdf_path = future_to_pdf[future]
try:
pdf_results = future.result()
all_comps.extend(pdf_results)
except Exception as e:
print(f"Error processing {pdf_path}: {str(e)}")
# Shuffle the results
random.shuffle(all_comps)
result = build_review_page(args, all_comps[0:args.review_size])
# Generate the specified number of copies of the report
for i in range(args.num_copies):
start_index = i * args.review_size
end_index = start_index + args.review_size
# Check if there is enough data for the next report
if start_index >= len(all_comps):
print(f"Not enough data to generate report {i}. Stopping early.")
break
build_review_page(args, all_comps[start_index:end_index], index=i)