addressed Jake's comment for pagenumbers with \d+

This commit is contained in:
aman-17 2025-06-23 23:29:10 +00:00
parent 9d04b30ea4
commit 202e22932e

View File

@ -1,10 +1,12 @@
import base64
import tempfile
import os
import re
from PIL import Image
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText
import tempfile
import torch
from PIL import Image
from transformers import AutoModelForImageTextToText, AutoProcessor, AutoTokenizer
from olmocr.data.renderpdf import render_pdf_to_base64png
_model = None
@ -12,30 +14,26 @@ _tokenizer = None
_processor = None
_device = None
def load_model(model_path: str = "nanonets/Nanonets-OCR-s"):
global _model, _tokenizer, _processor, _device
if _model is None:
if _model is None:
_device = "cuda" if torch.cuda.is_available() else "cpu"
_model = AutoModelForImageTextToText.from_pretrained(
model_path,
torch_dtype="auto",
device_map="auto"
model_path,
torch_dtype="auto",
device_map="auto",
# attn_implementation="flash_attention_2"
)
_model.eval()
_tokenizer = AutoTokenizer.from_pretrained(model_path)
_processor = AutoProcessor.from_pretrained(model_path)
return _model, _tokenizer, _processor
async def run_nanonetsocr(
pdf_path: str,
page_num: int = 1,
model_path: str = "nanonets/Nanonets-OCR-s",
max_new_tokens: int = 4096,
**kwargs
) -> str:
async def run_nanonetsocr(pdf_path: str, page_num: int = 1, model_path: str = "nanonets/Nanonets-OCR-s", max_new_tokens: int = 4096, **kwargs) -> str:
"""
Convert page of a PDF file to markdown using NANONETS-OCR.
@ -48,47 +46,42 @@ async def run_nanonetsocr(
Returns:
str: The OCR result in markdown format.
"""
model, tokenizer, processor = load_model(model_path)
image_base64 = render_pdf_to_base64png(
pdf_path,
page_num=page_num,
target_longest_image_dim=1024
)
image_base64 = render_pdf_to_base64png(pdf_path, page_num=page_num, target_longest_image_dim=1024)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
image_data = base64.b64decode(image_base64)
temp_file.write(image_data)
temp_image_path = temp_file.name
try:
image = Image.open(temp_image_path)
prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and ☑ for check boxes."""
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "image", "image": f"file://{temp_image_path}"},
{"type": "text", "text": prompt},
]},
{
"role": "user",
"content": [
{"type": "image", "image": f"file://{temp_image_path}"},
{"type": "text", "text": prompt},
],
},
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt", use_fast=True)
inputs = inputs.to(model.device)
with torch.no_grad():
output_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False
)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
generated_ids = [output_ids[len(input_ids) :] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
cleaned_text = re.sub(r'<page_number>.*?</page_number>', '', output_text[0])
cleaned_text = re.sub(r"<page_number>\d+</page_number>", "", output_text[0])
return cleaned_text
finally:
try:
os.unlink(temp_image_path)