mirror of
https://github.com/allenai/olmocr.git
synced 2025-10-18 03:32:16 +00:00
addressed Jake's comment for pagenumbers with \d+
This commit is contained in:
parent
9d04b30ea4
commit
202e22932e
@ -1,10 +1,12 @@
|
|||||||
import base64
|
import base64
|
||||||
import tempfile
|
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
from PIL import Image
|
import tempfile
|
||||||
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText
|
|
||||||
import torch
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import AutoModelForImageTextToText, AutoProcessor, AutoTokenizer
|
||||||
|
|
||||||
from olmocr.data.renderpdf import render_pdf_to_base64png
|
from olmocr.data.renderpdf import render_pdf_to_base64png
|
||||||
|
|
||||||
_model = None
|
_model = None
|
||||||
@ -12,30 +14,26 @@ _tokenizer = None
|
|||||||
_processor = None
|
_processor = None
|
||||||
_device = None
|
_device = None
|
||||||
|
|
||||||
|
|
||||||
def load_model(model_path: str = "nanonets/Nanonets-OCR-s"):
|
def load_model(model_path: str = "nanonets/Nanonets-OCR-s"):
|
||||||
global _model, _tokenizer, _processor, _device
|
global _model, _tokenizer, _processor, _device
|
||||||
|
|
||||||
if _model is None:
|
if _model is None:
|
||||||
_device = "cuda" if torch.cuda.is_available() else "cpu"
|
_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
_model = AutoModelForImageTextToText.from_pretrained(
|
_model = AutoModelForImageTextToText.from_pretrained(
|
||||||
model_path,
|
model_path,
|
||||||
torch_dtype="auto",
|
torch_dtype="auto",
|
||||||
device_map="auto"
|
device_map="auto",
|
||||||
# attn_implementation="flash_attention_2"
|
# attn_implementation="flash_attention_2"
|
||||||
)
|
)
|
||||||
_model.eval()
|
_model.eval()
|
||||||
_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||||
_processor = AutoProcessor.from_pretrained(model_path)
|
_processor = AutoProcessor.from_pretrained(model_path)
|
||||||
|
|
||||||
return _model, _tokenizer, _processor
|
return _model, _tokenizer, _processor
|
||||||
|
|
||||||
async def run_nanonetsocr(
|
|
||||||
pdf_path: str,
|
async def run_nanonetsocr(pdf_path: str, page_num: int = 1, model_path: str = "nanonets/Nanonets-OCR-s", max_new_tokens: int = 4096, **kwargs) -> str:
|
||||||
page_num: int = 1,
|
|
||||||
model_path: str = "nanonets/Nanonets-OCR-s",
|
|
||||||
max_new_tokens: int = 4096,
|
|
||||||
**kwargs
|
|
||||||
) -> str:
|
|
||||||
"""
|
"""
|
||||||
Convert page of a PDF file to markdown using NANONETS-OCR.
|
Convert page of a PDF file to markdown using NANONETS-OCR.
|
||||||
|
|
||||||
@ -48,47 +46,42 @@ async def run_nanonetsocr(
|
|||||||
Returns:
|
Returns:
|
||||||
str: The OCR result in markdown format.
|
str: The OCR result in markdown format.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
model, tokenizer, processor = load_model(model_path)
|
model, tokenizer, processor = load_model(model_path)
|
||||||
|
|
||||||
image_base64 = render_pdf_to_base64png(
|
image_base64 = render_pdf_to_base64png(pdf_path, page_num=page_num, target_longest_image_dim=1024)
|
||||||
pdf_path,
|
|
||||||
page_num=page_num,
|
|
||||||
target_longest_image_dim=1024
|
|
||||||
)
|
|
||||||
|
|
||||||
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
||||||
image_data = base64.b64decode(image_base64)
|
image_data = base64.b64decode(image_base64)
|
||||||
temp_file.write(image_data)
|
temp_file.write(image_data)
|
||||||
temp_image_path = temp_file.name
|
temp_image_path = temp_file.name
|
||||||
|
|
||||||
try:
|
try:
|
||||||
image = Image.open(temp_image_path)
|
image = Image.open(temp_image_path)
|
||||||
prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and ☑ for check boxes."""
|
prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and ☑ for check boxes."""
|
||||||
messages = [
|
messages = [
|
||||||
{"role": "system", "content": "You are a helpful assistant."},
|
{"role": "system", "content": "You are a helpful assistant."},
|
||||||
{"role": "user", "content": [
|
{
|
||||||
{"type": "image", "image": f"file://{temp_image_path}"},
|
"role": "user",
|
||||||
{"type": "text", "text": prompt},
|
"content": [
|
||||||
]},
|
{"type": "image", "image": f"file://{temp_image_path}"},
|
||||||
|
{"type": "text", "text": prompt},
|
||||||
|
],
|
||||||
|
},
|
||||||
]
|
]
|
||||||
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
||||||
|
|
||||||
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt", use_fast=True)
|
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt", use_fast=True)
|
||||||
inputs = inputs.to(model.device)
|
inputs = inputs.to(model.device)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output_ids = model.generate(
|
output_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
|
||||||
**inputs,
|
|
||||||
max_new_tokens=max_new_tokens,
|
generated_ids = [output_ids[len(input_ids) :] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
|
||||||
do_sample=False
|
|
||||||
)
|
|
||||||
|
|
||||||
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
|
|
||||||
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
||||||
cleaned_text = re.sub(r'<page_number>.*?</page_number>', '', output_text[0])
|
cleaned_text = re.sub(r"<page_number>\d+</page_number>", "", output_text[0])
|
||||||
|
|
||||||
return cleaned_text
|
return cleaned_text
|
||||||
|
|
||||||
finally:
|
finally:
|
||||||
try:
|
try:
|
||||||
os.unlink(temp_image_path)
|
os.unlink(temp_image_path)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user