This commit is contained in:
Jake Poznanski 2025-06-24 22:06:02 +00:00
commit 633b03d1da
3 changed files with 102 additions and 0 deletions

View File

@ -84,6 +84,18 @@ to run it against your own OCR tools. Your tool just needs to support Markdown o
<td align="center"><strong>99.4</strong></td>
<td align="center">72.0 ± 1.1</td>
</tr>
<tr>
<td align="left">Nanonets OCR</td>
<td align="center">67.0</td>
<td align="center">68.6</td>
<td align="center"><strong>77.7</strong></td>
<td align="center">39.5</td>
<td align="center">40.7</td>
<td align="center">69.9</td>
<td align="center">53.4</td>
<td align="center">99.3</td>
<td align="center">64.5 ± 1.1</td>
</tr>
<tr>
<td align="left">GPT-4o (No Anchor)</td>
<td align="center">51.5</td>

View File

@ -223,6 +223,7 @@ if __name__ == "__main__":
available_methods = {
"olmocr_pipeline": ("olmocr.bench.runners.run_olmocr_pipeline", "run_olmocr_pipeline"),
"gotocr": ("olmocr.bench.runners.run_gotocr", "run_gotocr"),
"nanonetsocr": ("olmocr.bench.runners.run_nanonetsocr", "run_nanonetsocr"),
"marker": ("olmocr.bench.runners.run_marker", "run_marker"),
"mineru": ("olmocr.bench.runners.run_mineru", "run_mineru"),
"chatgpt": ("olmocr.bench.runners.run_chatgpt", "run_chatgpt"),

View File

@ -0,0 +1,89 @@
import base64
import os
import re
import tempfile
import torch
from PIL import Image
from transformers import AutoModelForImageTextToText, AutoProcessor, AutoTokenizer
from olmocr.data.renderpdf import render_pdf_to_base64png
_model = None
_tokenizer = None
_processor = None
_device = None
def load_model(model_path: str = "nanonets/Nanonets-OCR-s"):
global _model, _tokenizer, _processor, _device
if _model is None:
_device = "cuda" if torch.cuda.is_available() else "cpu"
_model = AutoModelForImageTextToText.from_pretrained(
model_path,
torch_dtype="auto",
device_map="auto",
# attn_implementation="flash_attention_2"
)
_model.eval()
_tokenizer = AutoTokenizer.from_pretrained(model_path)
_processor = AutoProcessor.from_pretrained(model_path)
return _model, _tokenizer, _processor
async def run_nanonetsocr(pdf_path: str, page_num: int = 1, model_path: str = "nanonets/Nanonets-OCR-s", max_new_tokens: int = 4096, **kwargs) -> str:
"""
Convert page of a PDF file to markdown using NANONETS-OCR.
This function renders the first page of the PDF to an image, runs OCR on that image,
and returns the OCR result as a markdown-formatted string.
Args:
pdf_path (str): The local path to the PDF file.
Returns:
str: The OCR result in markdown format.
"""
model, tokenizer, processor = load_model(model_path)
image_base64 = render_pdf_to_base64png(pdf_path, page_num=page_num, target_longest_image_dim=1024)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
image_data = base64.b64decode(image_base64)
temp_file.write(image_data)
temp_image_path = temp_file.name
try:
image = Image.open(temp_image_path)
prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and ☑ for check boxes."""
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": [
{"type": "image", "image": f"file://{temp_image_path}"},
{"type": "text", "text": prompt},
],
},
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt", use_fast=True)
inputs = inputs.to(model.device)
with torch.no_grad():
output_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
generated_ids = [output_ids[len(input_ids) :] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
cleaned_text = re.sub(r"<page_number>\d+</page_number>", "", output_text[0])
return cleaned_text
finally:
try:
os.unlink(temp_image_path)
except Exception as e:
print(f"Warning: Failed to remove temporary file {temp_image_path}: {e}")