fixed dotsocr runner

This commit is contained in:
aman-17 2025-09-19 16:14:06 -07:00
parent 4f7623c429
commit 68defa23d7

View File

@ -1,5 +1,4 @@
import base64 import base64
import os
from io import BytesIO from io import BytesIO
import torch import torch
@ -9,17 +8,12 @@ from qwen_vl_utils import process_vision_info
from olmocr.data.renderpdf import render_pdf_to_base64png from olmocr.data.renderpdf import render_pdf_to_base64png
# Set LOCAL_RANK as required by DotsOCR
if "LOCAL_RANK" not in os.environ:
os.environ["LOCAL_RANK"] = "0"
# Global cache for the model and processor.
_device = "cuda" if torch.cuda.is_available() else "cpu"
_model = None _model = None
_processor = None _processor = None
def load_model(model_name: str = "rednote-hilab/dots.ocr"): def load_model(model_name: str = "./weights/DotsOCR"):
""" """
Load the DotsOCR model and processor if they haven't been loaded already. Load the DotsOCR model and processor if they haven't been loaded already.
@ -32,12 +26,12 @@ def load_model(model_name: str = "rednote-hilab/dots.ocr"):
""" """
global _model, _processor global _model, _processor
if _model is None or _processor is None: if _model is None or _processor is None:
# Load model following the official repo pattern
_model = AutoModelForCausalLM.from_pretrained( _model = AutoModelForCausalLM.from_pretrained(
model_name, model_name,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16, torch_dtype=torch.bfloat16,
device_map="auto", device_map="auto",
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
trust_remote_code=True trust_remote_code=True
) )
_processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) _processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
@ -47,7 +41,7 @@ def load_model(model_name: str = "rednote-hilab/dots.ocr"):
def run_dotsocr( def run_dotsocr(
pdf_path: str, pdf_path: str,
page_num: int = 1, page_num: int = 1,
model_name: str = "rednote-hilab/dots.ocr", model_name: str = "./weights/DotsOCR",
target_longest_image_dim: int = 1024 target_longest_image_dim: int = 1024
) -> str: ) -> str:
""" """
@ -59,7 +53,7 @@ def run_dotsocr(
Args: Args:
pdf_path (str): The local path to the PDF file. pdf_path (str): The local path to the PDF file.
page_num (int): The page number to process (default: 1). page_num (int): The page number to process (default: 1).
model_name (str): Hugging Face model name (default: "rednote-hilab/dots.ocr"). model_name (str): Hugging Face model name (default: "./weights/DotsOCR").
target_longest_image_dim (int): Target dimension for the longest side of the image (default: 1024). target_longest_image_dim (int): Target dimension for the longest side of the image (default: 1024).
Returns: Returns:
@ -75,24 +69,7 @@ def run_dotsocr(
image = Image.open(BytesIO(base64.b64decode(image_base64))) image = Image.open(BytesIO(base64.b64decode(image_base64)))
# Define the prompt for layout extraction # Define the prompt for layout extraction
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. prompt = """Extract the text content from this image."""
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.
"""
messages = [ messages = [
{ {
@ -126,8 +103,8 @@ def run_dotsocr(
inputs = inputs.to("cuda") inputs = inputs.to("cuda")
# Inference: Generation of the output # Inference: Generation of the output
with torch.no_grad(): # with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=24000) generated_ids = model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [ generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)