mirror of
https://github.com/allenai/olmocr.git
synced 2025-08-16 04:42:39 +00:00
Reviewing molmo training
This commit is contained in:
parent
0311b445fd
commit
72d2fa2fd4
@ -85,6 +85,7 @@ train = [
|
||||
"omegaconf",
|
||||
"s3fs",
|
||||
"necessary",
|
||||
"einops",
|
||||
"transformers>=4.45.1"
|
||||
]
|
||||
|
||||
|
57
tests/test_molmo.py
Normal file
57
tests/test_molmo.py
Normal file
@ -0,0 +1,57 @@
|
||||
import unittest
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
class MolmoProcessorTest(unittest.TestCase):
|
||||
def test_molmo_demo(self):
|
||||
# load the processor
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
'allenai/Molmo-7B-O-0924',
|
||||
trust_remote_code=True,
|
||||
torch_dtype='auto',
|
||||
)
|
||||
|
||||
# load the model
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
'allenai/Molmo-7B-O-0924',
|
||||
trust_remote_code=True,
|
||||
torch_dtype='auto',
|
||||
)
|
||||
|
||||
device = "cuda:0"
|
||||
|
||||
model = model.to(device)
|
||||
|
||||
# process the image and text
|
||||
inputs = processor.process(
|
||||
images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)],
|
||||
text="Describe this image."
|
||||
)
|
||||
|
||||
# move inputs to the correct device and make a batch of size 1
|
||||
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
||||
|
||||
print("Raw inputs")
|
||||
print(inputs)
|
||||
|
||||
print("\nShapes")
|
||||
print({(x, y.shape) for x,y in inputs.items()})
|
||||
|
||||
print("\nTokens")
|
||||
print(processor.tokenizer.batch_decode(inputs["input_ids"]))
|
||||
|
||||
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
|
||||
output = model.generate_from_batch(
|
||||
inputs,
|
||||
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
||||
tokenizer=processor.tokenizer
|
||||
)
|
||||
|
||||
# only get generated tokens; decode them to text
|
||||
generated_tokens = output[0,inputs['input_ids'].size(1):]
|
||||
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
||||
|
||||
# print the generated text
|
||||
print(generated_text)
|
Loading…
x
Reference in New Issue
Block a user