Merge remote-tracking branch 'origin/main' into jakep/vllm_perf

This commit is contained in:
Jake Poznanski 2025-06-17 15:25:32 +00:00
commit 8c62072832
9 changed files with 341 additions and 59 deletions

1
.gitignore vendored
View File

@ -20,6 +20,7 @@ olmOCR-bench/*
table_data*/
/synth*/
dolma_samples/*
old_train/
/*.html
scoreelo.csv
debug.log

View File

@ -61,18 +61,6 @@ We also ship a comprehensive benchmark suite covering over 7,000 test cases acro
</tr>
</thead>
<tbody>
<tr>
<td align="left">Marker v1.6.2</td>
<td align="center">24.3</td>
<td align="center">22.1</td>
<td align="center">69.8</td>
<td align="center">24.3</td>
<td align="center">87.1</td>
<td align="center">71.0</td>
<td align="center">76.9</td>
<td align="center"><strong>99.5</strong></td>
<td align="center">59.4 ± 1.1</td>
</tr>
<tr>
<td align="left">MinerU v1.3.10</td>
<td align="center">75.4</td>
@ -87,7 +75,7 @@ We also ship a comprehensive benchmark suite covering over 7,000 test cases acro
</tr>
<tr>
<td align="left">Mistral OCR API</td>
<td align="center"><strong>77.2</strong></td>
<td align="center">77.2</td>
<td align="center">67.5</td>
<td align="center">60.6</td>
<td align="center">29.3</td>
@ -97,6 +85,18 @@ We also ship a comprehensive benchmark suite covering over 7,000 test cases acro
<td align="center">99.4</td>
<td align="center">72.0 ± 1.1</td>
</tr>
<tr>
<td align="left">Marker v1.7.4 (hybrid)</td>
<td align="center"><strong>77.7</strong></td>
<td align="center">71.2</td>
<td align="center"><strong>78.1</strong></td>
<td align="center">32.3</td>
<td align="center">83.4</td>
<td align="center">73.8</td>
<td align="center">79.0</td>
<td align="center">99.2</td>
<td align="center">74.3 ± 1.1</td>
</tr>
<tr>
<td align="left">olmOCR v0.1.68 (pipeline.py)</td>
<td align="center">75.6</td>

View File

@ -37,7 +37,7 @@ to run it against your own OCR tools. Your tool just needs to support Markdown o
<td align="left">GOT OCR</td>
<td align="center">52.7</td>
<td align="center">52.0</td>
<td align="center">0.2</td>
<td align="center">0.20</td>
<td align="center">22.1</td>
<td align="center">93.6</td>
<td align="center">42.0</td>
@ -46,16 +46,16 @@ to run it against your own OCR tools. Your tool just needs to support Markdown o
<td align="center">48.3 ± 1.1</td>
</tr>
<tr>
<td align="left">Marker v1.6.2</td>
<td align="center">24.3</td>
<td align="center">22.1</td>
<td align="center">69.8</td>
<td align="center">24.3</td>
<td align="center">87.1</td>
<td align="center">71.0</td>
<td align="center">76.9</td>
<td align="center"><strong>99.5</strong></td>
<td align="center">59.4 ± 1.1</td>
<td align="left">Marker v1.7.5 (base)</td>
<td align="center">76.0</td>
<td align="center">57.9</td>
<td align="center">57.6</td>
<td align="center">27.8</td>
<td align="center">84.9</td>
<td align="center">72.9</td>
<td align="center">84.6</td>
<td align="center">99.1</td>
<td align="center">70.1 ± 1.1</td>
</tr>
<tr>
<td align="left">MinerU v1.3.10</td>
@ -78,7 +78,7 @@ to run it against your own OCR tools. Your tool just needs to support Markdown o
<td align="center">93.6</td>
<td align="center">71.3</td>
<td align="center">77.1</td>
<td align="center">99.4</td>
<td align="center"><strong>99.4</strong></td>
<td align="center">72.0 ± 1.1</td>
</tr>
<tr>
@ -121,7 +121,7 @@ to run it against your own OCR tools. Your tool just needs to support Markdown o
<td align="left">Gemini Flash 2 (Anchored)</td>
<td align="center">54.5</td>
<td align="center">56.1</td>
<td align="center"><strong>72.1</strong></td>
<td align="center">72.1</td>
<td align="center">34.2</td>
<td align="center">64.7</td>
<td align="center">61.5</td>
@ -157,7 +157,7 @@ to run it against your own OCR tools. Your tool just needs to support Markdown o
<td align="left">olmOCR v0.1.68 (No Anchor)</td>
<td align="center">72.1</td>
<td align="center">74.7</td>
<td align="center">71.5</td>
<td align="center"><strong>71.5</strong></td>
<td align="center">43.7</td>
<td align="center">91.6</td>
<td align="center">78.5</td>
@ -288,6 +288,3 @@ We have an internal data annotation tool that can be used to review the question
```bash
python -m olmocr.bench.review_app --port 5000 --debug ./olmOCR-bench/bench_data/multi_column.jsonl --force
```

View File

@ -4,6 +4,7 @@ import tempfile
from marker.converters.pdf import PdfConverter
from marker.models import create_model_dict
from marker.output import text_from_rendered
from marker.config.parser import ConfigParser
from pypdf import PdfReader, PdfWriter
_marker_converter = None
@ -15,10 +16,22 @@ def run_marker(pdf_path: str, page_num: int = 1) -> str:
if _marker_converter is None:
# Create a configuration dictionary with the necessary settings
config = {
"texify_inline_spans": True, # This enables conversion of inline math to LaTeX
"force_ocr": True, # This enables conversion of inline math to LaTeX
"use_llm": False, # We would prefer to run just plain marker for reporting bench results, not hybrid mode
"disable_tqdm": True, # Disable tqdm for cleaner output
"recognition_batch_size": 256,
"layout_batch_size": 48,
"detection_batch_size": 48,
"equation_batch_size": 64,
"table_rec_batch_size": 48,
"ocr_error_batch_size": 64,
}
config_parser = ConfigParser(config)
_marker_converter = PdfConverter(artifact_dict=create_model_dict(), config=config)
_marker_converter = PdfConverter(
artifact_dict=create_model_dict(),
config=config_parser.generate_config_dict(),
)
# Extract the specific page from the PDF
pdf_to_process = pdf_path

View File

@ -123,6 +123,8 @@ def normalize_text(md_content: str) -> str:
# Remove markdown bold formatting (** or __ for bold)
md_content = re.sub(r"\*\*(.*?)\*\*", r"\1", md_content)
md_content = re.sub(r"__(.*?)__", r"\1", md_content)
md_content = re.sub(r"</?b>", "", md_content) # Remove <b> tags if they exist
md_content = re.sub(r"</?i>", "", md_content) # Remove <i> tags if they exist
# Remove markdown italics formatting (* or _ for italics)
md_content = re.sub(r"\*(.*?)\*", r"\1", md_content)

View File

@ -329,7 +329,7 @@ async def process_page(args, worker_id: int, pdf_orig_path: str, pdf_local_path:
async def process_pdf(args, worker_id: int, pdf_orig_path: str):
with tempfile.NamedTemporaryFile("wb+", suffix=".pdf") as tf:
with tempfile.NamedTemporaryFile("wb+", suffix=".pdf", delete=False) as tf:
try:
data = await asyncio.to_thread(lambda: get_s3_bytes_with_backoff(pdf_s3, pdf_orig_path))
tf.write(data)
@ -347,6 +347,7 @@ async def process_pdf(args, worker_id: int, pdf_orig_path: str):
tf.write(convert_image_to_pdf_bytes(tf.name))
tf.flush()
try:
try:
reader = PdfReader(tf.name)
num_pages = reader.get_num_pages()
@ -398,6 +399,9 @@ async def process_pdf(args, worker_id: int, pdf_orig_path: str):
# You can't build a dolma doc with even 1 failed page, so just get out of here
# However, you don't want to propagate an exception higher up and cancel the entire work_group
return None
finally:
if os.path.exists(tf.name):
os.unlink(tf.name)
def build_dolma_document(pdf_orig_path, page_results):
@ -698,19 +702,31 @@ async def vllm_server_ready():
raise Exception("vllm server did not become ready after waiting.")
async def download_model(model_name_or_path: str):
if model_name_or_path.startswith("s3://") or model_name_or_path.startswith("gs://") or model_name_or_path.startswith("weka://"):
logger.info(f"Downloading model directory from '{model_name_or_path}'")
model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "olmocr", "model")
download_directory([model_name_or_path], model_cache_dir)
return model_cache_dir
elif os.path.isabs(model_name_or_path) and os.path.isdir(model_name_or_path):
logger.info(f"Using local model path at '{model_name_or_path}'")
return model_name_or_path
else:
logger.info(f"Downloading model with hugging face '{model_name_or_path}'")
snapshot_download(repo_id=model_name_or_path)
return model_name_or_path
async def download_model(model_name_or_path: str, max_retries: int = 5):
for retry in range(max_retries):
try:
if model_name_or_path.startswith("s3://") or model_name_or_path.startswith("gs://") or model_name_or_path.startswith("weka://"):
logger.info(f"Downloading model directory from '{model_name_or_path}'")
model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "olmocr", "model")
# Delete existing model cache directory if it exists
if os.path.exists(model_cache_dir):
shutil.rmtree(model_cache_dir)
download_directory([model_name_or_path], model_cache_dir)
return model_cache_dir
elif os.path.isabs(model_name_or_path) and os.path.isdir(model_name_or_path):
logger.info(f"Using local model path at '{model_name_or_path}'")
return model_name_or_path
else:
logger.info(f"Downloading model with hugging face '{model_name_or_path}'")
snapshot_download(repo_id=model_name_or_path)
return model_name_or_path
except Exception:
if retry == max_retries - 1:
raise # Raise on final attempt and fail the job
sleep_time = random.randrange(2, 20) * 2**retry
logger.exception(f"Could not download model, sleeping for {sleep_time} seconds to retry ({retry + 1}/{max_retries})")
await asyncio.sleep(random.randrange(10, 30) * 2**retry)
async def metrics_reporter(work_queue):
@ -899,6 +915,7 @@ def print_stats(args, root_work_queue):
logger.warning(f"Error processing {s3_path}: {e}")
return 0, 0, 0, 0, 0, set(), 0, 0
print(f"\nCompleted work items {completed_items:,} out of {total_items:,}: {completed_items/total_items*100:.2f}%")
print("\nProcessing output files...")
docs_total = 0
input_tokens_total = 0
@ -1026,8 +1043,8 @@ async def main():
# Wait a little bit so that not all beaker jobs in a task start at the same time and download the model at the same time
replica_count = int(os.environ.get("BEAKER_REPLICA_COUNT", "1"))
interval = 10 if (replica_count - 1) * 10 <= 240 else 240 / max(1, replica_count - 1)
sleep_time = int(int(os.environ.get("BEAKER_REPLICA_RANK", "0")) * interval)
interval = 10 if (replica_count - 1) * 10 <= 30 else 30 / max(1, replica_count - 1)
sleep_time = int(os.environ.get("BEAKER_REPLICA_RANK", "0")) * interval
logger.info(f"Beaker job sleeping for {sleep_time} seconds to stagger model downloads")
await asyncio.sleep(sleep_time)

View File

@ -64,7 +64,7 @@ data = {
"MinerU",
"Gemini Flash 2",
"Gemini Flash 2 (Batch)",
"Marker v1.6.2",
"Marker v1.7.5",
"Ours",
"Qwen 2 VL",
"Qwen 2.5 VL",
@ -77,7 +77,7 @@ data = {
61.5, # MinerU
63.8, # Gemini Flash 2 (Anchored)
63.8, # Same performance for batch
59.4, # marker v1.6.2
70.1, # marker v1.7.5 base
77.4, # Ours (performance is the same across hardware)
31.5, # Qwen2VL
65.5, # Qwen2.5VL
@ -94,7 +94,7 @@ model_categories = {
"MinerU": "Open Source Tool",
"Gemini Flash 2": "Commercial VLM",
"Gemini Flash 2 (Batch)": "Commercial VLM",
"Marker v1.6.2": "Open Source Tool",
"Marker v1.7.5": "Open Source Tool",
"Ours": "Ours",
"Qwen 2 VL": "Open VLM",
"Qwen 2.5 VL": "Open VLM",
@ -132,7 +132,7 @@ model_label_offsets = {
"MinerU": [-15, -20],
"Gemini Flash 2": [-10, 10],
"Gemini Flash 2 (Batch)": [-50, -15],
"Marker v1.6.2": [-35, -20],
"Marker v1.7.5": [-20, 15],
"Ours": [-20, 10],
"Qwen 2 VL": [-35, 10],
"Qwen 2.5 VL": [-35, 10],

View File

@ -104,7 +104,7 @@ except:
has_aws_creds = False
print(f"AWS credentials secret not found: {aws_creds_secret}")
# Build commands list
# First experiment: Original benchmark job
commands = []
if has_aws_creds:
commands.extend([
@ -142,21 +142,71 @@ if has_aws_creds:
EnvVar(name="AWS_CREDENTIALS_FILE", secret=aws_creds_secret)
]
# Create experiment spec
# Create first experiment spec
experiment_spec = ExperimentSpec(
description=f"OlmOCR Benchmark Run - Branch: {git_branch}, Commit: {git_hash}",
budget="ai2/oe-data",
tasks=[TaskSpec(**task_spec_args)],
)
# Create the experiment
# Create the first experiment
experiment = b.experiment.create(spec=experiment_spec, workspace="ai2/olmocr")
print(f"Created experiment: {experiment.id}")
print(f"Created benchmark experiment: {experiment.id}")
print(f"View at: https://beaker.org/ex/{experiment.id}")
print("-------")
print("")
# Second experiment: Performance test job
perf_pipeline_cmd = "python -m olmocr.pipeline ./localworkspace --markdown --pdfs s3://ai2-oe-data/jakep/olmocr/olmOCR-mix-0225/benchmark_set/*.pdf"
if model:
perf_pipeline_cmd += f" --model {model}"
perf_commands = []
if has_aws_creds:
perf_commands.extend([
"mkdir -p ~/.aws",
'echo "$AWS_CREDENTIALS_FILE" > ~/.aws/credentials'
])
perf_commands.append(perf_pipeline_cmd)
# Build performance task spec
perf_task_spec_args = {
"name": "olmocr-performance",
"image": ImageSource(beaker=f"{beaker_user}/{image_tag}"),
"command": [
"bash", "-c",
" && ".join(perf_commands)
],
"context": TaskContext(
priority=Priority.normal,
preemptible=True,
),
"resources": TaskResources(gpu_count=1),
"constraints": Constraints(cluster=["ai2/ceres-cirrascale", "ai2/jupiter-cirrascale-2"]),
"result": ResultSpec(path="/noop-results"),
}
# Add env vars if AWS credentials exist
if has_aws_creds:
perf_task_spec_args["env_vars"] = [
EnvVar(name="AWS_CREDENTIALS_FILE", secret=aws_creds_secret)
]
# Create performance experiment spec
perf_experiment_spec = ExperimentSpec(
description=f"OlmOCR Performance Test - Branch: {git_branch}, Commit: {git_hash}",
budget="ai2/oe-data",
tasks=[TaskSpec(**perf_task_spec_args)],
)
# Create the performance experiment
perf_experiment = b.experiment.create(spec=perf_experiment_spec, workspace="ai2/olmocr")
print(f"Created performance experiment: {perf_experiment.id}")
print(f"View at: https://beaker.org/ex/{perf_experiment.id}")
EOF
# Run the Python script to create the experiment
echo "Creating Beaker experiment..."
# Run the Python script to create the experiments
echo "Creating Beaker experiments..."
if [ -n "$MODEL" ]; then
echo "Using model: $MODEL"
$PYTHON /tmp/run_benchmark_experiment.py $IMAGE_TAG $BEAKER_USER $GIT_BRANCH $GIT_HASH "$MODEL"
@ -167,4 +217,4 @@ fi
# Clean up temporary file
rm /tmp/run_benchmark_experiment.py
echo "Benchmark experiment submitted successfully!"
echo "Benchmark experiments submitted successfully!"

202
scripts/run_marker_benchmark.sh Executable file
View File

@ -0,0 +1,202 @@
#!/bin/bash
# Runs marker benchmark, measuring both olmOCR-bench performance and per document processing performance
# ./scripts/run_marker_benchmark.sh
# ./scripts/run_marker_benchmark.sh 1.7.5
set -e
# Parse command line arguments
MARKER_VERSION="${1:-1.7.5}"
echo "Using marker version: $MARKER_VERSION"
# Check for uncommitted changes
if ! git diff-index --quiet HEAD --; then
echo "Error: There are uncommitted changes in the repository."
echo "Please commit or stash your changes before running the benchmark."
echo ""
echo "Uncommitted changes:"
git status --short
exit 1
fi
# Use conda environment Python if available, otherwise use system Python
if [ -n "$CONDA_PREFIX" ]; then
PYTHON="$CONDA_PREFIX/bin/python"
echo "Using conda Python from: $CONDA_PREFIX"
else
PYTHON="python"
echo "Warning: No conda environment detected, using system Python"
fi
# Get version from version.py
VERSION=$($PYTHON -c 'import olmocr.version; print(olmocr.version.VERSION)')
echo "OlmOCR version: $VERSION"
# Get first 10 characters of git hash
GIT_HASH=$(git rev-parse HEAD | cut -c1-10)
echo "Git hash: $GIT_HASH"
# Get current git branch name
GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD)
echo "Git branch: $GIT_BRANCH"
# Create full image tag
IMAGE_TAG="olmocr-benchmark-${VERSION}-${GIT_HASH}"
echo "Building Docker image with tag: $IMAGE_TAG"
# Build the Docker image
echo "Building Docker image..."
docker build --platform linux/amd64 -f ./Dockerfile -t $IMAGE_TAG .
# Get Beaker username
BEAKER_USER=$(beaker account whoami --format json | jq -r '.[0].name')
echo "Beaker user: $BEAKER_USER"
# Push image to beaker
echo "Trying to push image to Beaker..."
if ! beaker image create --workspace ai2/oe-data-pdf --name $IMAGE_TAG $IMAGE_TAG 2>/dev/null; then
echo "Warning: Beaker image with tag $IMAGE_TAG already exists. Using existing image."
fi
# Create Python script to run beaker experiment
cat << 'EOF' > /tmp/run_benchmark_experiment.py
import sys
from beaker import Beaker, ExperimentSpec, TaskSpec, TaskContext, ResultSpec, TaskResources, ImageSource, Priority, Constraints, EnvVar
# Get image tag, beaker user, git branch, git hash, and marker version from command line
image_tag = sys.argv[1]
beaker_user = sys.argv[2]
git_branch = sys.argv[3]
git_hash = sys.argv[4]
marker_version = sys.argv[5]
# Initialize Beaker client
b = Beaker.from_env(default_workspace="ai2/olmocr")
# Check if AWS credentials secret exists
aws_creds_secret = f"{beaker_user}-AWS_CREDENTIALS_FILE"
try:
# Try to get the secret to see if it exists
b.secret.get(aws_creds_secret, workspace="ai2/olmocr")
has_aws_creds = True
print(f"Found AWS credentials secret: {aws_creds_secret}")
except:
has_aws_creds = False
print(f"AWS credentials secret not found: {aws_creds_secret}")
# First experiment: Original benchmark job
commands = []
if has_aws_creds:
commands.extend([
"mkdir -p ~/.aws",
'echo "$AWS_CREDENTIALS_FILE" > ~/.aws/credentials'
])
commands.extend([
"git clone https://huggingface.co/datasets/allenai/olmOCR-bench",
"cd olmOCR-bench && git lfs pull && cd ..",
f"pip install marker-pdf=={marker_version}",
"pip install --upgrade torchvision",
"python -m olmocr.bench.convert marker --dir ./olmOCR-bench/bench_data",
"python -m olmocr.bench.benchmark --dir ./olmOCR-bench/bench_data"
])
# Build task spec with optional env vars
task_spec_args = {
"name": "marker-benchmark",
"image": ImageSource(beaker=f"{beaker_user}/{image_tag}"),
"command": [
"bash", "-c",
" && ".join(commands)
],
"context": TaskContext(
priority=Priority.normal,
preemptible=True,
),
"resources": TaskResources(gpu_count=1),
"constraints": Constraints(cluster=["ai2/ceres-cirrascale", "ai2/jupiter-cirrascale-2"]),
"result": ResultSpec(path="/noop-results"),
}
# Add env vars if AWS credentials exist
if has_aws_creds:
task_spec_args["env_vars"] = [
EnvVar(name="AWS_CREDENTIALS_FILE", secret=aws_creds_secret)
]
# Create first experiment spec
experiment_spec = ExperimentSpec(
description=f"Marker {marker_version} Benchmark Run - Branch: {git_branch}, Commit: {git_hash}",
budget="ai2/oe-data",
tasks=[TaskSpec(**task_spec_args)],
)
# Create the first experiment
experiment = b.experiment.create(spec=experiment_spec, workspace="ai2/olmocr")
print(f"Created benchmark experiment: {experiment.id}")
print(f"View at: https://beaker.org/ex/{experiment.id}")
print("-------")
print("")
perf_commands = []
if has_aws_creds:
perf_commands.extend([
"mkdir -p ~/.aws",
'echo "$AWS_CREDENTIALS_FILE" > ~/.aws/credentials'
])
perf_commands.extend([
f"pip install marker-pdf=={marker_version}",
"pip install --upgrade torchvision",
"pip install awscli",
"aws s3 cp --recursive s3://ai2-oe-data/jakep/olmocr/olmOCR-mix-0225/benchmark_set/ /root/olmOCR-mix-0225_benchmark_set/",
# Tried with workers 8, but it was taking a really huge amount of time
#"time marker --force_ocr /root/olmOCR-mix-0225_benchmark_set/ --output_dir /root/olmOCR-mix-0225_benchmark_set_marker --workers 8"
"time marker --force_ocr /root/olmOCR-mix-0225_benchmark_set/ --output_dir /root/olmOCR-mix-0225_benchmark_set_marker"
])
# Build performance task spec
perf_task_spec_args = {
"name": "marker-performance",
"image": ImageSource(beaker=f"{beaker_user}/{image_tag}"),
"command": [
"bash", "-c",
" && ".join(perf_commands)
],
"context": TaskContext(
priority=Priority.normal,
preemptible=True,
),
"resources": TaskResources(gpu_count=1),
"constraints": Constraints(cluster=["ai2/ceres-cirrascale", "ai2/jupiter-cirrascale-2"]),
"result": ResultSpec(path="/noop-results"),
}
# Add env vars if AWS credentials exist
if has_aws_creds:
perf_task_spec_args["env_vars"] = [
EnvVar(name="AWS_CREDENTIALS_FILE", secret=aws_creds_secret)
]
# Create performance experiment spec
perf_experiment_spec = ExperimentSpec(
description=f"Marker {marker_version} Performance Test - Branch: {git_branch}, Commit: {git_hash}",
budget="ai2/oe-data",
tasks=[TaskSpec(**perf_task_spec_args)],
)
# Create the performance experiment
perf_experiment = b.experiment.create(spec=perf_experiment_spec, workspace="ai2/olmocr")
print(f"Created performance experiment: {perf_experiment.id}")
print(f"View at: https://beaker.org/ex/{perf_experiment.id}")
EOF
# Run the Python script to create the experiments
echo "Creating Beaker experiments..."
$PYTHON /tmp/run_benchmark_experiment.py $IMAGE_TAG $BEAKER_USER $GIT_BRANCH $GIT_HASH $MARKER_VERSION
# Clean up temporary file
rm /tmp/run_benchmark_experiment.py
echo "Benchmark experiments submitted successfully!"