mirror of
https://github.com/allenai/olmocr.git
synced 2025-10-11 00:02:41 +00:00
Merge branch 'main' into jakep/new_data
This commit is contained in:
commit
8ef68fde88
@ -7,6 +7,14 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
|
||||
## Unreleased
|
||||
|
||||
## [v0.3.8](https://github.com/allenai/olmocr/releases/tag/v0.3.8) - 2025-10-06
|
||||
|
||||
## [v0.3.7](https://github.com/allenai/olmocr/releases/tag/v0.3.7) - 2025-10-06
|
||||
|
||||
## [v0.3.6](https://github.com/allenai/olmocr/releases/tag/v0.3.6) - 2025-09-29
|
||||
|
||||
## [v0.3.4](https://github.com/allenai/olmocr/releases/tag/v0.3.4) - 2025-08-31
|
||||
|
||||
## [v0.3.3](https://github.com/allenai/olmocr/releases/tag/v0.3.3) - 2025-08-15
|
||||
|
||||
## [v0.3.2](https://github.com/allenai/olmocr/releases/tag/v0.3.2) - 2025-08-14
|
||||
|
89
Dockerfile
89
Dockerfile
@ -1,62 +1,53 @@
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
FROM --platform=linux/amd64 nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
|
||||
FROM vllm/vllm-openai:v0.11.0
|
||||
|
||||
# Needs to be repeated below the FROM, or else it's not picked up
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ENV PYTHON_VERSION=3.12
|
||||
ENV CUSTOM_PY="/usr/bin/python${PYTHON_VERSION}"
|
||||
|
||||
# Set environment variable to prevent interactive prompts
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# From original VLLM dockerfile https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile
|
||||
# Install Python and other dependencies
|
||||
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo python3-apt \
|
||||
&& for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv
|
||||
|
||||
# olmOCR Specific Installs - Install fonts BEFORE changing Python version
|
||||
RUN echo "ttf-mscorefonts-installer msttcorefonts/accepted-mscorefonts-eula select true" | debconf-set-selections && \
|
||||
# Workaround for installing fonts, which are needed for good rendering of documents
|
||||
RUN DIST_PY=$(ls /usr/bin/python3.[0-9]* | sort -V | head -n1) && \
|
||||
# If a python alternative scheme already exists, remember its value so we \
|
||||
# can restore it later; otherwise, we will restore to CUSTOM_PY when we \
|
||||
# are done. \
|
||||
if update-alternatives --query python3 >/dev/null 2>&1; then \
|
||||
ORIGINAL_PY=$(update-alternatives --query python3 | awk -F": " '/Value:/ {print $2}'); \
|
||||
else \
|
||||
ORIGINAL_PY=$CUSTOM_PY; \
|
||||
fi && \
|
||||
# ---- APT operations that require the distro python3 ------------------- \
|
||||
echo "Temporarily switching python3 alternative to ${DIST_PY} so that APT scripts use the distro‑built Python runtime." && \
|
||||
update-alternatives --install /usr/bin/python3 python3 ${DIST_PY} 1 && \
|
||||
update-alternatives --set python3 ${DIST_PY} && \
|
||||
update-alternatives --install /usr/bin/python python ${DIST_PY} 1 && \
|
||||
update-alternatives --set python ${DIST_PY} && \
|
||||
apt-get update -y && \
|
||||
apt-get install -y --no-install-recommends poppler-utils fonts-crosextra-caladea fonts-crosextra-carlito gsfonts lcdf-typetools ttf-mscorefonts-installer
|
||||
|
||||
# Now update Python alternatives
|
||||
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& update-alternatives --install /usr/bin/python python /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv python3 -m pip install uv
|
||||
|
||||
# Install some helper utilities for things like the benchmark
|
||||
RUN apt-get update -y && apt-get install -y --no-install-recommends \
|
||||
git \
|
||||
git-lfs \
|
||||
curl \
|
||||
wget \
|
||||
unzip
|
||||
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
apt-get remove -y python3-blinker || true && \
|
||||
# Pre‑seed the Microsoft Core Fonts EULA so the build is non‑interactive \
|
||||
echo "ttf-mscorefonts-installer msttcorefonts/accepted-mscorefonts-eula select true" | debconf-set-selections && \
|
||||
DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
|
||||
python3-apt \
|
||||
update-notifier-common \
|
||||
poppler-utils \
|
||||
fonts-crosextra-caladea \
|
||||
fonts-crosextra-carlito \
|
||||
gsfonts \
|
||||
lcdf-typetools \
|
||||
ttf-mscorefonts-installer \
|
||||
git git-lfs curl wget unzip && \
|
||||
# ---- Restore the original / custom Python alternative ----------------- \
|
||||
echo "Restoring python3 alternative to ${ORIGINAL_PY}" && \
|
||||
update-alternatives --install /usr/bin/python3 python3 ${ORIGINAL_PY} 1 && \
|
||||
update-alternatives --set python3 ${ORIGINAL_PY} && \
|
||||
update-alternatives --install /usr/bin/python python ${ORIGINAL_PY} 1 || true && \
|
||||
update-alternatives --set python ${ORIGINAL_PY} || true && \
|
||||
# Ensure pip is available for the restored Python \
|
||||
curl -sS https://bootstrap.pypa.io/get-pip.py | ${ORIGINAL_PY}
|
||||
|
||||
# keep the build context clean
|
||||
WORKDIR /build
|
||||
COPY . /build
|
||||
|
||||
|
||||
# Needed to resolve setuptools dependencies
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
RUN uv pip install --system --no-cache ".[gpu]" --extra-index-url https://download.pytorch.org/whl/cu128
|
||||
RUN uv pip install --system https://download.pytorch.org/whl/cu128/flashinfer/flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl
|
||||
RUN uv pip install --system --no-cache ".[bench]"
|
||||
|
||||
RUN playwright install-deps
|
||||
|
45
README.md
45
README.md
@ -209,6 +209,43 @@ python -m olmocr.pipeline ./localworkspace --markdown --pdfs tests/gnarly_pdfs/*
|
||||
|
||||
With the addition of the `--markdown` flag, results will be stored as markdown files inside of `./localworkspace/markdown/`.
|
||||
|
||||
### Using External vLLM Server
|
||||
|
||||
If you have a vLLM server already running elsewhere (or any inference platform implementing the relevant subset of the OpenAI API), you can point olmOCR to use it instead of spawning a local instance:
|
||||
|
||||
```bash
|
||||
# Use external vLLM server instead of local one
|
||||
python -m olmocr.pipeline ./localworkspace --server http://remote-server:8000 --markdown --pdfs tests/gnarly_pdfs/*.pdf
|
||||
```
|
||||
|
||||
The served model name should be `olmocr`. An example vLLM launch command would be:
|
||||
```bash
|
||||
vllm serve allenai/olmOCR-7B-0825-FP8 --served-model-name olmocr --max-model-len 16384
|
||||
```
|
||||
|
||||
#### Run olmOCR with the DeepInfra server endpoint:
|
||||
Signup at [DeepInfra](https://deepinfra.com/) and get your API key from the DeepInfra dashboard.
|
||||
Store the API key as an environment variable.
|
||||
```bash
|
||||
export DEEPINFRA_API_KEY="your-api-key-here"
|
||||
```
|
||||
|
||||
```bash
|
||||
python -m olmocr.pipeline ./localworkspace \
|
||||
--server https://api.deepinfra.com/v1/openai \
|
||||
--api_key $DEEPINFRA_API_KEY \
|
||||
--pages_per_group 100 \
|
||||
--model allenai/olmOCR-7B-0825 \
|
||||
--markdown \
|
||||
--pdfs path/to/your/*.pdf
|
||||
```
|
||||
- `--server`: DeepInfra's OpenAI-compatible endpoint: `https://api.deepinfra.com/v1/openai`
|
||||
- `--api_key`: Your DeepInfra API key
|
||||
- `--pages_per_group`: You may want a smaller number of pages per group as many external provides have lower concurrent request limits
|
||||
- `--model`: The model identifier on DeepInfra: `allenai/olmOCR-7B-0825`
|
||||
- Other arguments work the same as with local inference
|
||||
|
||||
|
||||
#### Viewing Results
|
||||
|
||||
The `./localworkspace/` workspace folder will then have both [Dolma](https://github.com/allenai/dolma) and markdown files (if using `--markdown`).
|
||||
@ -249,6 +286,7 @@ For example:
|
||||
python -m olmocr.pipeline s3://my_s3_bucket/pdfworkspaces/exampleworkspace --pdfs s3://my_s3_bucket/jakep/gnarly_pdfs/*.pdf --beaker --beaker_gpus 4
|
||||
```
|
||||
|
||||
|
||||
### Using Docker
|
||||
|
||||
Pull the Docker image.
|
||||
@ -284,7 +322,7 @@ python -m olmocr.pipeline ./localworkspace --markdown --pdfs olmocr-sample.pdf
|
||||
python -m olmocr.pipeline --help
|
||||
usage: pipeline.py [-h] [--pdfs [PDFS ...]] [--model MODEL] [--workspace_profile WORKSPACE_PROFILE] [--pdf_profile PDF_PROFILE] [--pages_per_group PAGES_PER_GROUP] [--max_page_retries MAX_PAGE_RETRIES] [--max_page_error_rate MAX_PAGE_ERROR_RATE] [--workers WORKERS]
|
||||
[--apply_filter] [--stats] [--markdown] [--target_longest_image_dim TARGET_LONGEST_IMAGE_DIM] [--target_anchor_text_len TARGET_ANCHOR_TEXT_LEN] [--guided_decoding] [--gpu-memory-utilization GPU_MEMORY_UTILIZATION] [--max_model_len MAX_MODEL_LEN]
|
||||
[--tensor-parallel-size TENSOR_PARALLEL_SIZE] [--data-parallel-size DATA_PARALLEL_SIZE] [--port PORT] [--beaker] [--beaker_workspace BEAKER_WORKSPACE] [--beaker_cluster BEAKER_CLUSTER] [--beaker_gpus BEAKER_GPUS] [--beaker_priority BEAKER_PRIORITY]
|
||||
[--tensor-parallel-size TENSOR_PARALLEL_SIZE] [--data-parallel-size DATA_PARALLEL_SIZE] [--port PORT] [--server SERVER] [--beaker] [--beaker_workspace BEAKER_WORKSPACE] [--beaker_cluster BEAKER_CLUSTER] [--beaker_gpus BEAKER_GPUS] [--beaker_priority BEAKER_PRIORITY]
|
||||
workspace
|
||||
|
||||
Manager for running millions of PDFs through a batch inference pipeline
|
||||
@ -316,7 +354,7 @@ options:
|
||||
Maximum amount of anchor text to use (characters), not used for new models
|
||||
--guided_decoding Enable guided decoding for model YAML type outputs
|
||||
|
||||
VLLM Forwarded arguments:
|
||||
VLLM arguments:
|
||||
--gpu-memory-utilization GPU_MEMORY_UTILIZATION
|
||||
Fraction of VRAM vLLM may pre-allocate for KV-cache (passed through to vllm serve).
|
||||
--max_model_len MAX_MODEL_LEN
|
||||
@ -326,6 +364,9 @@ VLLM Forwarded arguments:
|
||||
--data-parallel-size DATA_PARALLEL_SIZE, -dp DATA_PARALLEL_SIZE
|
||||
Data parallel size for vLLM
|
||||
--port PORT Port to use for the VLLM server
|
||||
--server SERVER URL of external vLLM (or other compatible provider)
|
||||
server (e.g., http://hostname:port). If provided,
|
||||
skips spawning local vLLM instance
|
||||
|
||||
beaker/cluster execution:
|
||||
--beaker Submit this job to beaker instead of running locally
|
||||
|
@ -130,7 +130,7 @@ def normalize_text(md_content: str) -> str:
|
||||
md_content = re.sub(r"\*(.*?)\*", r"\1", md_content)
|
||||
md_content = re.sub(r"_(.*?)_", r"\1", md_content)
|
||||
|
||||
# Convert down to a consistent unicode form, so é == e + accent, unicode forms
|
||||
# Convert down to a consistent unicode form, so é == e + accent, unicode forms
|
||||
md_content = unicodedata.normalize("NFC", md_content)
|
||||
|
||||
# Dictionary of characters to replace: keys are fancy characters, values are ASCII equivalents, unicode micro with greek mu comes up often enough too
|
||||
|
@ -11,6 +11,7 @@ import os
|
||||
import random
|
||||
import re
|
||||
import shutil
|
||||
import ssl
|
||||
import sys
|
||||
import tempfile
|
||||
import time
|
||||
@ -132,7 +133,7 @@ async def build_page_query(local_pdf_path: str, page: int, target_longest_image_
|
||||
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
|
||||
return {
|
||||
"model": "olmocr",
|
||||
"model": model_name,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
@ -151,29 +152,44 @@ async def build_page_query(local_pdf_path: str, page: int, target_longest_image_
|
||||
# It feels strange perhaps, but httpx and aiohttp are very complex beasts
|
||||
# Ex. the sessionpool in httpcore has 4 different locks in it, and I've noticed
|
||||
# that at the scale of 100M+ requests, that they deadlock in different strange ways
|
||||
async def apost(url, json_data):
|
||||
async def apost(url, json_data, api_key=None):
|
||||
parsed_url = urlparse(url)
|
||||
host = parsed_url.hostname
|
||||
port = parsed_url.port or 80
|
||||
# Default to 443 for HTTPS, 80 for HTTP
|
||||
if parsed_url.scheme == "https":
|
||||
port = parsed_url.port or 443
|
||||
use_ssl = True
|
||||
else:
|
||||
port = parsed_url.port or 80
|
||||
use_ssl = False
|
||||
path = parsed_url.path or "/"
|
||||
|
||||
writer = None
|
||||
try:
|
||||
reader, writer = await asyncio.open_connection(host, port)
|
||||
if use_ssl:
|
||||
ssl_context = ssl.create_default_context()
|
||||
reader, writer = await asyncio.open_connection(host, port, ssl=ssl_context)
|
||||
else:
|
||||
reader, writer = await asyncio.open_connection(host, port)
|
||||
|
||||
json_payload = json.dumps(json_data)
|
||||
request = (
|
||||
f"POST {path} HTTP/1.1\r\n"
|
||||
f"Host: {host}\r\n"
|
||||
f"Content-Type: application/json\r\n"
|
||||
f"Content-Length: {len(json_payload)}\r\n"
|
||||
f"Connection: close\r\n\r\n"
|
||||
f"{json_payload}"
|
||||
)
|
||||
|
||||
headers = [
|
||||
f"POST {path} HTTP/1.1",
|
||||
f"Host: {host}",
|
||||
f"Content-Type: application/json",
|
||||
f"Content-Length: {len(json_payload)}",
|
||||
]
|
||||
|
||||
if api_key:
|
||||
headers.append(f"Authorization: Bearer {api_key}")
|
||||
|
||||
headers.append("Connection: close")
|
||||
|
||||
request = "\r\n".join(headers) + "\r\n\r\n" + json_payload
|
||||
writer.write(request.encode())
|
||||
await writer.drain()
|
||||
|
||||
# Read status line
|
||||
status_line = await reader.readline()
|
||||
if not status_line:
|
||||
raise ConnectionError("No response from server")
|
||||
@ -213,7 +229,16 @@ async def apost(url, json_data):
|
||||
|
||||
|
||||
async def process_page(args, worker_id: int, pdf_orig_path: str, pdf_local_path: str, page_num: int) -> PageResult:
|
||||
COMPLETION_URL = f"http://localhost:{BASE_SERVER_PORT}/v1/chat/completions"
|
||||
if args.server:
|
||||
server_url = args.server.rstrip("/")
|
||||
# Check if the server URL already contains '/v1/openai' (DeepInfra case)
|
||||
if "/v1/openai" in server_url:
|
||||
COMPLETION_URL = f"{server_url}/chat/completions"
|
||||
else:
|
||||
COMPLETION_URL = f"{server_url}/v1/chat/completions"
|
||||
logger.debug(f"Using completion URL: {COMPLETION_URL}")
|
||||
else:
|
||||
COMPLETION_URL = f"http://localhost:{BASE_SERVER_PORT}/v1/chat/completions"
|
||||
MAX_RETRIES = args.max_page_retries
|
||||
MODEL_MAX_CONTEXT = 16384
|
||||
TEMPERATURE_BY_ATTEMPT = [0.1, 0.1, 0.2, 0.3, 0.5, 0.8, 0.9, 1.0]
|
||||
@ -224,11 +249,19 @@ async def process_page(args, worker_id: int, pdf_orig_path: str, pdf_local_path:
|
||||
|
||||
while attempt < MAX_RETRIES:
|
||||
lookup_attempt = min(attempt, len(TEMPERATURE_BY_ATTEMPT) - 1)
|
||||
# For external servers (like DeepInfra), use the model name from args
|
||||
# For local inference, always use 'olmocr'
|
||||
if args.server and hasattr(args, "model"):
|
||||
model_name = args.model
|
||||
else:
|
||||
model_name = "olmocr"
|
||||
|
||||
query = await build_page_query(
|
||||
pdf_local_path,
|
||||
page_num,
|
||||
args.target_longest_image_dim,
|
||||
image_rotation=cumulative_rotation,
|
||||
model_name=model_name,
|
||||
)
|
||||
# Change temperature as number of attempts increases to overcome repetition issues at expense of quality
|
||||
query["temperature"] = TEMPERATURE_BY_ATTEMPT[lookup_attempt]
|
||||
@ -242,10 +275,17 @@ async def process_page(args, worker_id: int, pdf_orig_path: str, pdf_local_path:
|
||||
logger.debug(f"Built page query for {pdf_orig_path}-{page_num}")
|
||||
|
||||
try:
|
||||
status_code, response_body = await apost(COMPLETION_URL, json_data=query)
|
||||
# Passing API key only for external servers that need authentication
|
||||
if args.server and hasattr(args, "api_key"):
|
||||
api_key = args.api_key
|
||||
else:
|
||||
api_key = None
|
||||
status_code, response_body = await apost(COMPLETION_URL, json_data=query, api_key=api_key)
|
||||
|
||||
if status_code == 400:
|
||||
raise ValueError(f"Got BadRequestError from server: {response_body}, skipping this response")
|
||||
elif status_code == 429:
|
||||
raise ConnectionError(f"Too many requests, doing exponential backoff")
|
||||
elif status_code == 500:
|
||||
raise ValueError(f"Got InternalServerError from server: {response_body}, skipping this response")
|
||||
elif status_code != 200:
|
||||
@ -596,6 +636,8 @@ async def vllm_server_task(model_name_or_path, args, semaphore, unknown_args=Non
|
||||
str(args.tensor_parallel_size),
|
||||
"--data-parallel-size",
|
||||
str(args.data_parallel_size),
|
||||
"--limit-mm-per-prompt",
|
||||
'{"video": 0}', # Disabling video encoder saves RAM that you can put towards the KV cache, thanks @charitarthchugh
|
||||
]
|
||||
|
||||
if args.gpu_memory_utilization is not None:
|
||||
@ -730,15 +772,27 @@ async def vllm_server_host(model_name_or_path, args, semaphore, unknown_args=Non
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
async def vllm_server_ready():
|
||||
async def vllm_server_ready(args):
|
||||
max_attempts = 300
|
||||
delay_sec = 1
|
||||
url = f"http://localhost:{BASE_SERVER_PORT}/v1/models"
|
||||
if args.server:
|
||||
# Check if the server URL already contains '/v1/openai' (DeepInfra case)
|
||||
server_url = args.server.rstrip("/")
|
||||
if "/v1/openai" in server_url:
|
||||
url = f"{server_url}/models"
|
||||
else:
|
||||
url = f"{server_url}/v1/models"
|
||||
else:
|
||||
url = f"http://localhost:{BASE_SERVER_PORT}/v1/models"
|
||||
|
||||
for attempt in range(1, max_attempts + 1):
|
||||
try:
|
||||
headers = {}
|
||||
if args.server and hasattr(args, "api_key") and args.api_key:
|
||||
headers["Authorization"] = f"Bearer {args.api_key}"
|
||||
|
||||
async with httpx.AsyncClient() as session:
|
||||
response = await session.get(url)
|
||||
response = await session.get(url, headers=headers)
|
||||
|
||||
if response.status_code == 200:
|
||||
logger.info("vllm server is ready.")
|
||||
@ -1058,6 +1112,7 @@ async def main():
|
||||
parser.add_argument("--target_longest_image_dim", type=int, help="Dimension on longest side to use for rendering the pdf pages", default=1288)
|
||||
parser.add_argument("--target_anchor_text_len", type=int, help="Maximum amount of anchor text to use (characters), not used for new models", default=-1)
|
||||
parser.add_argument("--guided_decoding", action="store_true", help="Enable guided decoding for model YAML type outputs")
|
||||
parser.add_argument("--api_key", type=str, default=None, help="API key for authenticated remote servers (e.g., DeepInfra)")
|
||||
|
||||
vllm_group = parser.add_argument_group(
|
||||
"VLLM arguments", "These arguments are passed to vLLM. Any unrecognized arguments are also automatically forwarded to vLLM."
|
||||
@ -1069,6 +1124,11 @@ async def main():
|
||||
vllm_group.add_argument("--tensor-parallel-size", "-tp", type=int, default=1, help="Tensor parallel size for vLLM")
|
||||
vllm_group.add_argument("--data-parallel-size", "-dp", type=int, default=1, help="Data parallel size for vLLM")
|
||||
vllm_group.add_argument("--port", type=int, default=30024, help="Port to use for the VLLM server")
|
||||
vllm_group.add_argument(
|
||||
"--server",
|
||||
type=str,
|
||||
help="URL of external vLLM (or other compatible provider) server (e.g., http://hostname:port). If provided, skips spawning local vLLM instance",
|
||||
)
|
||||
|
||||
# Beaker/job running stuff
|
||||
beaker_group = parser.add_argument_group("beaker/cluster execution")
|
||||
@ -1207,12 +1267,17 @@ async def main():
|
||||
|
||||
# If you get this far, then you are doing inference and need a GPU
|
||||
# check_sglang_version()
|
||||
check_torch_gpu_available()
|
||||
if not args.server:
|
||||
check_torch_gpu_available()
|
||||
|
||||
logger.info(f"Starting pipeline with PID {os.getpid()}")
|
||||
|
||||
# Download the model before you do anything else
|
||||
model_name_or_path = await download_model(args.model)
|
||||
if args.server:
|
||||
logger.info(f"Using external server at {args.server}")
|
||||
model_name_or_path = None
|
||||
else:
|
||||
model_name_or_path = await download_model(args.model)
|
||||
|
||||
# Initialize the work queue
|
||||
qsize = await work_queue.initialize_queue()
|
||||
@ -1226,9 +1291,12 @@ async def main():
|
||||
# As soon as one worker is no longer saturating the gpu, the next one can start sending requests
|
||||
semaphore = asyncio.Semaphore(1)
|
||||
|
||||
vllm_server = asyncio.create_task(vllm_server_host(model_name_or_path, args, semaphore, unknown_args))
|
||||
# Start local vLLM instance if not using external one
|
||||
vllm_server = None
|
||||
if not args.server:
|
||||
vllm_server = asyncio.create_task(vllm_server_host(model_name_or_path, args, semaphore, unknown_args))
|
||||
|
||||
await vllm_server_ready()
|
||||
await vllm_server_ready(args)
|
||||
|
||||
metrics_task = asyncio.create_task(metrics_reporter(work_queue))
|
||||
|
||||
@ -1241,11 +1309,16 @@ async def main():
|
||||
# Wait for all worker tasks to finish
|
||||
await asyncio.gather(*worker_tasks)
|
||||
|
||||
vllm_server.cancel()
|
||||
# Cancel vLLM server if it was started
|
||||
if vllm_server is not None:
|
||||
vllm_server.cancel()
|
||||
metrics_task.cancel()
|
||||
|
||||
# Wait for cancelled tasks to complete
|
||||
await asyncio.gather(vllm_server, metrics_task, return_exceptions=True)
|
||||
tasks_to_wait = [metrics_task]
|
||||
if vllm_server is not None:
|
||||
tasks_to_wait.append(vllm_server)
|
||||
await asyncio.gather(*tasks_to_wait, return_exceptions=True)
|
||||
|
||||
# Output final metrics summary
|
||||
metrics_summary = metrics.get_metrics_summary()
|
||||
|
@ -2,7 +2,7 @@ _MAJOR = "0"
|
||||
_MINOR = "3"
|
||||
# On main and in a nightly release the patch should be one ahead of the last
|
||||
# released build.
|
||||
_PATCH = "3"
|
||||
_PATCH = "8"
|
||||
# This is mainly for nightly builds which have the suffix ".dev$DATE". See
|
||||
# https://semver.org/#is-v123-a-semantic-version for the semantics.
|
||||
_SUFFIX = ""
|
||||
|
@ -37,7 +37,7 @@ dependencies = [
|
||||
"boto3",
|
||||
"httpx",
|
||||
"torch>=2.7.0",
|
||||
"transformers==4.53.2",
|
||||
"transformers==4.55.2",
|
||||
"img2pdf",
|
||||
"beaker-py",
|
||||
]
|
||||
@ -51,7 +51,7 @@ Changelog = "https://github.com/allenai/olmocr/blob/main/CHANGELOG.md"
|
||||
|
||||
[project.optional-dependencies]
|
||||
gpu = [
|
||||
"vllm==0.10.0"
|
||||
"vllm==0.11.0"
|
||||
]
|
||||
|
||||
dev = [
|
||||
|
@ -68,7 +68,7 @@ read -p "Creating new release for $TAG. Do you want to continue? [Y/n] " prompt
|
||||
|
||||
if [[ $prompt == "y" || $prompt == "Y" || $prompt == "yes" || $prompt == "Yes" ]]; then
|
||||
python scripts/prepare_changelog.py
|
||||
git add -A
|
||||
git add CHANGELOG.md
|
||||
git commit -m "Bump version to $TAG for release" || true && git push
|
||||
echo "Creating new git tag $TAG"
|
||||
git tag "$TAG" -m "$TAG"
|
||||
|
@ -192,6 +192,7 @@ class MockArgs:
|
||||
max_page_retries: int = 8
|
||||
target_longest_image_dim: int = 1288
|
||||
guided_decoding: bool = False
|
||||
server: str | None = None
|
||||
|
||||
|
||||
class TestRotationCorrection:
|
||||
@ -208,7 +209,7 @@ class TestRotationCorrection:
|
||||
# Counter to track number of API calls
|
||||
call_count = 0
|
||||
|
||||
async def mock_apost(url, json_data):
|
||||
async def mock_apost(url, json_data, api_key=None):
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
|
||||
@ -267,9 +268,9 @@ This is the corrected text from the document."""
|
||||
build_page_query_calls = []
|
||||
original_build_page_query = build_page_query
|
||||
|
||||
async def mock_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation=0):
|
||||
async def mock_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation=0, model_name="olmocr"):
|
||||
build_page_query_calls.append(image_rotation)
|
||||
return await original_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation)
|
||||
return await original_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation, model_name)
|
||||
|
||||
with patch("olmocr.pipeline.apost", side_effect=mock_apost):
|
||||
with patch("olmocr.pipeline.tracker", mock_tracker):
|
||||
@ -310,7 +311,7 @@ This is the corrected text from the document."""
|
||||
# Counter to track number of API calls
|
||||
call_count = 0
|
||||
|
||||
async def mock_apost(url, json_data):
|
||||
async def mock_apost(url, json_data, api_key=None):
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
|
||||
@ -375,9 +376,9 @@ Document is now correctly oriented after 180 degree rotation."""
|
||||
build_page_query_calls = []
|
||||
original_build_page_query = build_page_query
|
||||
|
||||
async def mock_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation=0):
|
||||
async def mock_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation=0, model_name="olmocr"):
|
||||
build_page_query_calls.append(image_rotation)
|
||||
return await original_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation)
|
||||
return await original_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation, model_name)
|
||||
|
||||
with patch("olmocr.pipeline.apost", side_effect=mock_apost):
|
||||
with patch("olmocr.pipeline.tracker", mock_tracker):
|
||||
@ -419,7 +420,7 @@ Document is now correctly oriented after 180 degree rotation."""
|
||||
# Counter to track number of API calls
|
||||
call_count = 0
|
||||
|
||||
async def mock_apost(url, json_data):
|
||||
async def mock_apost(url, json_data, api_key=None):
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
|
||||
@ -481,9 +482,9 @@ Document correctly oriented at 90 degrees total rotation."""
|
||||
build_page_query_calls = []
|
||||
original_build_page_query = build_page_query
|
||||
|
||||
async def mock_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation=0):
|
||||
async def mock_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation=0, model_name="olmocr"):
|
||||
build_page_query_calls.append(image_rotation)
|
||||
return await original_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation)
|
||||
return await original_build_page_query(local_pdf_path, page, target_longest_image_dim, image_rotation, model_name)
|
||||
|
||||
with patch("olmocr.pipeline.apost", side_effect=mock_apost):
|
||||
with patch("olmocr.pipeline.tracker", mock_tracker):
|
||||
|
Loading…
x
Reference in New Issue
Block a user