Running a mini config again with metric

This commit is contained in:
Jake Poznanski 2024-10-03 11:12:30 -07:00
parent 046d4a4534
commit 8f1fa4f796
3 changed files with 7 additions and 3 deletions

View File

@ -33,6 +33,7 @@ train_data:
response_glob_path: s3://ai2-oe-data/jakep/pdfdata/openai_batch_done_v5_1_eval/*.json
valid_data:
metric_for_best_model: openai_batch_data_v5_1_eval_loss
sources:
- name: openai_batch_data_v5_1_eval
query_glob_path: s3://ai2-oe-data/jakep/pdfdata/openai_batch_data_v5_1_eval/*.jsonl
@ -51,10 +52,10 @@ hparams:
gradient_checkpointing: false
clip_grad_norm: 1.0
learning_rate: 3e-4
max_steps: 500
max_steps: 50
pad_multiple_of: 16
log_every_steps: 50
eval_every_steps: 100
log_every_steps: 10
eval_every_steps: 50
optim: adamw_torch
lr_scheduler: cosine
weight_decay: 0.01

View File

@ -82,6 +82,7 @@ class SourceConfig:
@dataclass
class DataConfig:
seed: int = field(default=42, help="The seed to use for data loading")
metric_for_best_model: Optional[str] = field(help="metric to pass to trainer args to use for picking best model checkpoint at end", default=None)
sources: List[SourceConfig] = field(help="The source configurations")

View File

@ -3,6 +3,7 @@ import json
import base64
import logging
import time
import random
from io import BytesIO
from PIL import Image
from functools import partial
@ -194,6 +195,7 @@ def run_train(config: TrainConfig):
max_grad_norm=config.hparams.clip_grad_norm,
remove_unused_columns=False,
eval_on_start=True,
metric_for_best_model=config.valid_data.metric_for_best_model,
)
# Set the collator