Downloads from s3 based on hash

This commit is contained in:
Jake Poznanski 2024-11-12 15:18:04 -08:00
parent 6598e2dc45
commit 910c2ebcfc
2 changed files with 149 additions and 118 deletions

View File

@ -398,8 +398,7 @@ async def worker(args, queue, semaphore, worker_id):
async def sglang_server_task(args, semaphore): async def sglang_server_task(args, semaphore):
model_cache_dir = os.path.join(os.path.expanduser('~'), '.cache', 'pdelfin', 'model') model_cache_dir = os.path.join(os.path.expanduser('~'), '.cache', 'pdelfin', 'model')
# TODO cache locally download_directory(args.model, model_cache_dir)
#download_directory(args.model, model_cache_dir)
# Check the rope config and make sure it's got the proper key # Check the rope config and make sure it's got the proper key
with open(os.path.join(model_cache_dir, "config.json"), "r") as cfin: with open(os.path.join(model_cache_dir, "config.json"), "r") as cfin:
@ -484,6 +483,7 @@ async def sglang_server_task(args, semaphore):
async def sglang_server_host(args, semaphore): async def sglang_server_host(args, semaphore):
while True: while True:
await sglang_server_task(args, semaphore) await sglang_server_task(args, semaphore)
logger.warning("SGLang server task ended")
async def sglang_server_ready(): async def sglang_server_ready():
@ -525,7 +525,7 @@ async def main():
parser.add_argument('--workspace_profile', help='S3 configuration profile for accessing the workspace', default=None) parser.add_argument('--workspace_profile', help='S3 configuration profile for accessing the workspace', default=None)
parser.add_argument('--pdf_profile', help='S3 configuration profile for accessing the raw pdf documents', default=None) parser.add_argument('--pdf_profile', help='S3 configuration profile for accessing the raw pdf documents', default=None)
parser.add_argument('--group_size', type=int, default=20, help='Number of pdfs that will be part of each work item in the work queue.') parser.add_argument('--group_size', type=int, default=20, help='Number of pdfs that will be part of each work item in the work queue.')
parser.add_argument('--workers', type=int, default=3, help='Number of workers to run at a time') parser.add_argument('--workers', type=int, default=5, help='Number of workers to run at a time')
parser.add_argument('--model', help='List of paths where you can find the model to convert this pdf. You can specify several different paths here, and the script will try to use the one which is fastest to access', parser.add_argument('--model', help='List of paths where you can find the model to convert this pdf. You can specify several different paths here, and the script will try to use the one which is fastest to access',
default=["weka://oe-data-default/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/best_bf16/", default=["weka://oe-data-default/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/best_bf16/",

View File

@ -6,6 +6,7 @@ import tempfile
import boto3 import boto3
import requests import requests
import concurrent.futures import concurrent.futures
import hashlib # Added for MD5 hash computation
from urllib.parse import urlparse from urllib.parse import urlparse
from pathlib import Path from pathlib import Path
@ -14,7 +15,7 @@ from google.cloud import storage
from botocore.config import Config from botocore.config import Config
from botocore.exceptions import NoCredentialsError from botocore.exceptions import NoCredentialsError
from boto3.s3.transfer import TransferConfig from boto3.s3.transfer import TransferConfig
from typing import Optional from typing import Optional, List
from urllib.parse import urlparse from urllib.parse import urlparse
import zstandard as zstd import zstandard as zstd
from io import BytesIO, TextIOWrapper from io import BytesIO, TextIOWrapper
@ -133,21 +134,19 @@ def is_running_on_gcp():
except requests.RequestException: except requests.RequestException:
return False return False
def download_directory(model_choices: List[str], local_dir: str):
def download_directory(model_choices: list[str], local_dir: str):
""" """
Download the model to a specified local directory. Download the model to a specified local directory.
The function will attempt to download from the first available source in the provided list. The function will attempt to download from the first available source in the provided list.
Supports Weka (weka://), Google Cloud Storage (gs://), and Amazon S3 (s3://) links. Supports Weka (weka://), Google Cloud Storage (gs://), and Amazon S3 (s3://) links.
Args: Args:
model_choices (list[str]): List of model paths (weka://, gs://, or s3://). model_choices (List[str]): List of model paths (weka://, gs://, or s3://).
local_dir (str): Local directory path where the model will be downloaded. local_dir (str): Local directory path where the model will be downloaded.
Raises: Raises:
ValueError: If no valid model path is found in the provided choices. ValueError: If no valid model path is found in the provided choices.
""" """
# Ensure the local directory exists
local_path = Path(os.path.expanduser(local_dir)) local_path = Path(os.path.expanduser(local_dir))
local_path.mkdir(parents=True, exist_ok=True) local_path.mkdir(parents=True, exist_ok=True)
logger.info(f"Local directory set to: {local_path}") logger.info(f"Local directory set to: {local_path}")
@ -157,148 +156,180 @@ def download_directory(model_choices: list[str], local_dir: str):
other_choices = [path for path in model_choices if not path.startswith("weka://")] other_choices = [path for path in model_choices if not path.startswith("weka://")]
prioritized_choices = weka_choices + other_choices prioritized_choices = weka_choices + other_choices
# Iterate through the provided choices and attempt to download from the first available source
for model_path in prioritized_choices: for model_path in prioritized_choices:
logger.info(f"Attempting to download from: {model_path}") logger.info(f"Attempting to download from: {model_path}")
try: try:
if model_path.startswith("weka://"): if model_path.startswith("weka://"):
download_dir_from_weka(model_path, str(local_path)) download_dir_from_storage(
model_path, str(local_path), storage_type='weka')
logger.info(f"Successfully downloaded model from Weka: {model_path}") logger.info(f"Successfully downloaded model from Weka: {model_path}")
return return
elif model_path.startswith("gs://"): elif model_path.startswith("gs://"):
download_dir_from_gcs(model_path, str(local_path)) download_dir_from_storage(
model_path, str(local_path), storage_type='gcs')
logger.info(f"Successfully downloaded model from Google Cloud Storage: {model_path}") logger.info(f"Successfully downloaded model from Google Cloud Storage: {model_path}")
return return
elif model_path.startswith("s3://"): elif model_path.startswith("s3://"):
download_dir_from_s3(model_path, str(local_path)) download_dir_from_storage(
model_path, str(local_path), storage_type='s3')
logger.info(f"Successfully downloaded model from S3: {model_path}") logger.info(f"Successfully downloaded model from S3: {model_path}")
return return
else: else:
logger.warning(f"Unsupported model path scheme: {model_path}") logger.warning(f"Unsupported model path scheme: {model_path}")
except Exception as e: except Exception as e:
logger.error(f"Failed to download from {model_path}: {e}") logger.error(f"Failed to download from {model_path}: {e}")
continue # Try the next available source continue
raise ValueError("Failed to download the model from all provided sources.") raise ValueError("Failed to download the model from all provided sources.")
def download_dir_from_gcs(gcs_path: str, local_dir: str): def download_dir_from_storage(storage_path: str, local_dir: str, storage_type: str):
"""Download model files from Google Cloud Storage to a local directory.""" """
client = storage.Client() Generalized function to download model files from different storage services
bucket_name, prefix = parse_s3_path(gcs_path.replace("gs://", "s3://")) to a local directory, syncing using MD5 hashes where possible.
bucket = client.bucket(bucket_name)
Args:
storage_path (str): The path to the storage location (weka://, gs://, or s3://).
local_dir (str): The local directory where files will be downloaded.
storage_type (str): Type of storage ('weka', 'gcs', or 's3').
Raises:
ValueError: If the storage type is unsupported or credentials are missing.
"""
bucket_name, prefix = parse_s3_path(storage_path)
total_files = 0
objects = []
if storage_type == 'gcs':
client = storage.Client()
bucket = client.bucket(bucket_name)
blobs = list(bucket.list_blobs(prefix=prefix)) blobs = list(bucket.list_blobs(prefix=prefix))
total_files = len(blobs) total_files = len(blobs)
logger.info(f"Found {total_files} files in GCS bucket '{bucket_name}' with prefix '{prefix}'.") logger.info(f"Found {total_files} files in GCS bucket '{bucket_name}' with prefix '{prefix}'.")
with concurrent.futures.ThreadPoolExecutor() as executor: def should_download(blob, local_file_path):
futures = [] return compare_hashes_gcs(blob, local_file_path)
for blob in blobs:
relative_path = os.path.relpath(blob.name, prefix)
local_file_path = os.path.join(local_dir, relative_path)
os.makedirs(os.path.dirname(local_file_path), exist_ok=True)
futures.append(executor.submit(blob.download_to_filename, local_file_path))
# Use tqdm to display progress def download_blob(blob, local_file_path):
for _ in tqdm(concurrent.futures.as_completed(futures), total=total_files, desc="Downloading from GCS"): blob.download_to_filename(local_file_path)
pass
logger.info(f"Downloaded model from Google Cloud Storage to {local_dir}") items = blobs
elif storage_type in ('s3', 'weka'):
if storage_type == 'weka':
def download_dir_from_s3(s3_path: str, local_dir: str):
"""Download model files from S3 to a local directory."""
boto3_config = Config(
max_pool_connections=500 # Adjust this number based on your requirements
)
s3_client = boto3.client('s3', config=boto3_config)
bucket, prefix = parse_s3_path(s3_path)
paginator = s3_client.get_paginator("list_objects_v2")
pages = paginator.paginate(Bucket=bucket, Prefix=prefix)
objects = []
for page in pages:
if 'Contents' in page:
objects.extend(page['Contents'])
total_files = len(objects)
logger.info(f"Found {total_files} files in S3 bucket '{bucket}' with prefix '{prefix}'.")
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
for obj in objects:
key = obj["Key"]
relative_path = os.path.relpath(key, prefix)
local_file_path = os.path.join(local_dir, relative_path)
os.makedirs(os.path.dirname(local_file_path), exist_ok=True)
futures.append(executor.submit(s3_client.download_file, bucket, key, local_file_path))
# Use tqdm to display progress
for _ in tqdm(concurrent.futures.as_completed(futures), total=total_files, desc="Downloading from S3"):
pass
logger.info(f"Downloaded model from S3 to {local_dir}")
def download_dir_from_weka(weka_path: str, local_dir: str):
"""Download model files from Weka to a local directory."""
# Retrieve Weka credentials from environment variables
weka_access_key = os.getenv("WEKA_ACCESS_KEY_ID") weka_access_key = os.getenv("WEKA_ACCESS_KEY_ID")
weka_secret_key = os.getenv("WEKA_SECRET_ACCESS_KEY") weka_secret_key = os.getenv("WEKA_SECRET_ACCESS_KEY")
if not weka_access_key or not weka_secret_key: if not weka_access_key or not weka_secret_key:
raise ValueError("WEKA_ACCESS_KEY_ID and WEKA_SECRET_ACCESS_KEY environment variables must be set for Weka access.") raise ValueError("WEKA_ACCESS_KEY_ID and WEKA_SECRET_ACCESS_KEY must be set for Weka access.")
endpoint_url = "https://weka-aus.beaker.org:9000"
# Configure the boto3 client for Weka
weka_endpoint = "https://weka-aus.beaker.org:9000"
boto3_config = Config( boto3_config = Config(
max_pool_connections=500, # Adjust this number based on your requirements max_pool_connections=500,
signature_version='s3v4', signature_version='s3v4',
retries={'max_attempts': 10, 'mode': 'standard'} retries={'max_attempts': 10, 'mode': 'standard'}
) )
# Configure transfer settings for multipart download
transfer_config = TransferConfig(
multipart_threshold=8 * 1024 * 1024, # 8MB threshold for multipart downloads
multipart_chunksize=8 * 1024 * 1024, # 8MB per part
max_concurrency=100, # Number of threads for each file download
use_threads=True # Enable threading
)
s3_client = boto3.client( s3_client = boto3.client(
's3', 's3',
endpoint_url=weka_endpoint, endpoint_url=endpoint_url,
aws_access_key_id=weka_access_key, aws_access_key_id=weka_access_key,
aws_secret_access_key=weka_secret_key, aws_secret_access_key=weka_secret_key,
config=boto3_config config=boto3_config
) )
else:
s3_client = boto3.client('s3', config=Config(max_pool_connections=500))
bucket, prefix = parse_s3_path(weka_path)
paginator = s3_client.get_paginator("list_objects_v2") paginator = s3_client.get_paginator("list_objects_v2")
try: pages = paginator.paginate(Bucket=bucket_name, Prefix=prefix)
pages = paginator.paginate(Bucket=bucket, Prefix=prefix)
except s3_client.exceptions.NoSuchBucket:
raise ValueError(f"The bucket '{bucket}' does not exist in Weka.")
objects = []
for page in pages: for page in pages:
if 'Contents' in page: if 'Contents' in page:
objects.extend(page['Contents']) objects.extend(page['Contents'])
total_files = len(objects) total_files = len(objects)
logger.info(f"Found {total_files} files in Weka bucket '{bucket}' with prefix '{prefix}'.") logger.info(f"Found {total_files} files in {'Weka' if storage_type == 'weka' else 'S3'} bucket '{bucket_name}' with prefix '{prefix}'.")
transfer_config = TransferConfig(
multipart_threshold=8 * 1024 * 1024,
multipart_chunksize=8 * 1024 * 1024,
max_concurrency=100,
use_threads=True
)
def should_download(obj, local_file_path):
return compare_hashes_s3(obj, local_file_path)
def download_blob(obj, local_file_path):
s3_client.download_file(bucket_name, obj['Key'], local_file_path, Config=transfer_config)
items = objects
else:
raise ValueError(f"Unsupported storage type: {storage_type}")
with concurrent.futures.ThreadPoolExecutor() as executor: with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [] futures = []
for obj in objects: for item in items:
key = obj["Key"] if storage_type == 'gcs':
relative_path = os.path.relpath(key, prefix) relative_path = os.path.relpath(item.name, prefix)
else:
relative_path = os.path.relpath(item['Key'], prefix)
local_file_path = os.path.join(local_dir, relative_path) local_file_path = os.path.join(local_dir, relative_path)
os.makedirs(os.path.dirname(local_file_path), exist_ok=True) os.makedirs(os.path.dirname(local_file_path), exist_ok=True)
futures.append(executor.submit(s3_client.download_file, bucket, key, local_file_path, Config=transfer_config)) if should_download(item, local_file_path):
futures.append(executor.submit(download_blob, item, local_file_path))
else:
total_files -= 1 # Decrement total_files as we're skipping this file
# Use tqdm to display progress if total_files > 0:
for _ in tqdm(concurrent.futures.as_completed(futures), total=total_files, desc="Downloading from Weka"): for _ in tqdm(concurrent.futures.as_completed(futures), total=total_files, desc=f"Downloading from {storage_type.upper()}"):
pass pass
else:
logger.info("All files are up-to-date. No downloads needed.")
logger.info(f"Downloaded model from Weka to {local_dir}") logger.info(f"Downloaded model from {storage_type.upper()} to {local_dir}")
def compare_hashes_gcs(blob, local_file_path: str) -> bool:
"""Compare MD5 hashes for GCS blobs."""
if os.path.exists(local_file_path):
remote_md5_base64 = blob.md5_hash
hash_md5 = hashlib.md5()
with open(local_file_path, "rb") as f:
for chunk in iter(lambda: f.read(8192), b""):
hash_md5.update(chunk)
local_md5 = hash_md5.digest()
remote_md5 = base64.b64decode(remote_md5_base64)
if remote_md5 == local_md5:
logger.info(f"File '{local_file_path}' already up-to-date. Skipping download.")
return False
else:
logger.info(f"File '{local_file_path}' differs from GCS. Downloading.")
return True
else:
logger.info(f"File '{local_file_path}' does not exist locally. Downloading.")
return True
def compare_hashes_s3(obj, local_file_path: str) -> bool:
"""Compare MD5 hashes or sizes for S3 objects (including Weka)."""
if os.path.exists(local_file_path):
etag = obj['ETag'].strip('"')
if '-' in etag:
remote_size = obj['Size']
local_size = os.path.getsize(local_file_path)
if remote_size == local_size:
logger.info(f"File '{local_file_path}' size matches remote multipart file. Skipping download.")
return False
else:
logger.info(f"File '{local_file_path}' size differs from remote multipart file. Downloading.")
return True
else:
hash_md5 = hashlib.md5()
with open(local_file_path, "rb") as f:
for chunk in iter(lambda: f.read(8192), b""):
hash_md5.update(chunk)
local_md5 = hash_md5.hexdigest()
if etag == local_md5:
logger.info(f"File '{local_file_path}' already up-to-date. Skipping download.")
return False
else:
logger.info(f"File '{local_file_path}' differs from remote. Downloading.")
return True
else:
logger.info(f"File '{local_file_path}' does not exist locally. Downloading.")
return True