More docs

This commit is contained in:
Jake Poznanski 2024-11-04 17:28:09 +00:00
parent 73bd961135
commit 93d70683d4
2 changed files with 50 additions and 0 deletions

View File

@ -46,6 +46,15 @@ You should expect somewhere between 1,400 to 1,800 tokens per second per H100 GP
python -m pdelfin.birrpipeline [s3_workspace_path] --add_pdfs [s3_glob_path or path to file with s3 paths (one per line)]
```
For example:
```bash
python -m pdelfin.birrpipeline s3://ai2-oe-data/[your username]/pdfworkspaces/[workspacename] --pdf_profile s2 --add_pdfs s3://ai2-oe-data/jakep/gnarly_pdfs/*.pdf
```
After this runs the first time, you should have a whole bunch of json files generated in `s3://ai2-oe-data/[your username]/pdfworkspaces/[workspacename]/round_0/`
Now you need to run them using birr.
### TODOs for future versions

View File

@ -0,0 +1,41 @@
model:
# full fine tune
name_or_path: weka://oe-data-default/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/best_bf16/
#name_or_path: s3://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/
vlm: true
# necessary to prevent random crashes, until vllm fixes some bugs
num_scheduler_steps: 1
format:
add_generation_prompt: true
generate:
# The model's max context length is 8096, but around 1500 tokens are reserved for the image itself
max_context_length: 6500
temperature: 0.8
top_p: 1.0
drop_long_outputs: false
pipeline:
sqs_queue_name: jake-pdf
num_workers: 3
generation_batch_size: 256
tokenization_batch_size: 64
output_serializer: default
target_bucket: ai2-oe-data
target_object_prefix: [your username]/pdfworkspaces/s2orc_3200k_v2/inference_outputs
allowed_restarts_per_predictor: 10
task:
budget: ai2/oe-data
workspace: ai2/oe-data-model-based-cleanup
name: qwen2vl-schedsteps-bg
replicas: 128
priority: LOW
gpu_count: 1
cluster:
- ai2/jupiter-cirrascale-2
- ai2/saturn-cirrascale