Sampling some sequence lengths

This commit is contained in:
Jake Poznanski 2024-09-25 09:05:11 -07:00
parent 07c0323c91
commit 9cbc128553
3 changed files with 46 additions and 1 deletions

View File

@ -29,7 +29,7 @@ def prepare_data_for_qwen2_training(example, processor):
# Right now, we are going to downsample to 1024 on the longest dimension, because
# 2048 as we passed to OpenAI is too large for training
width, height = main_image.size
assert 1800 <= max(width, height) <= 2200
assert 1800 <= max(width, height) <= 2200, f"Image size {width}x{height} invalid"
main_image = main_image.resize((width // 2, height // 2), Image.LANCZOS)

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

View File

@ -1,4 +1,9 @@
import unittest
from torch.utils.data import DataLoader
from tqdm import tqdm
from functools import partial
from transformers import AutoProcessor
from pdelfin.train.dataloader import (
build_batch_query_response_vision_dataset,
@ -7,6 +12,8 @@ from pdelfin.train.dataloader import (
load_jsonl_from_s3,
)
from pdelfin.train.dataprep import batch_prepare_data_for_qwen2_training
class TestBatchQueryResponseDataset(unittest.TestCase):
def testLoadS3(self):
@ -24,6 +31,44 @@ class TestBatchQueryResponseDataset(unittest.TestCase):
print(ds)
def testPlotSequenceLengthHistogram(self):
import plotly.express as px
ds = build_batch_query_response_vision_dataset(
query_glob_path="s3://ai2-oe-data/jakep/openai_batch_data_v2/*.jsonl",
response_glob_path="s3://ai2-oe-data/jakep/openai_batch_done_v2/*.json",
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
formatted_dataset = ds.with_transform(partial(batch_prepare_data_for_qwen2_training, processor=processor))
train_dataloader = DataLoader(formatted_dataset, batch_size=1, num_workers=50, shuffle=False)
max_seen_len = 0
steps = 0
sequence_lengths = [] # List to store sequence lengths
for entry in tqdm(train_dataloader):
num_input_tokens = entry["input_ids"].shape[1]
max_seen_len = max(max_seen_len, num_input_tokens)
sequence_lengths.append(num_input_tokens) # Collecting sequence lengths
if steps % 100 == 0:
print(f"Max input len {max_seen_len}")
steps += 1
# model.forward(**{k: v.to("cuda:0") for (k,v) in entry.items()})
print(f"Max input len {max_seen_len}")
# Plotting the histogram using Plotly
fig = px.histogram(
sequence_lengths,
nbins=100,
title="Distribution of Input Sequence Lengths",
labels={'value': 'Sequence Length', 'count': 'Frequency'}
)
fig.write_image("sequence_lengths_histogram.png")
def testExtractBatch(self):
query_data = load_jsonl_from_s3("s3://ai2-oe-data/jakep/openai_batch_data_v2/*.jsonl", first_n_files=3)
query_data = query_data["train"]