Adding stricter math and table tests when in synthetic mode

This commit is contained in:
Jake Poznanski 2025-09-23 18:37:50 +00:00
parent 1197c35808
commit a00d9d172e
3 changed files with 212 additions and 17 deletions

View File

@ -729,6 +729,7 @@ def generate_tests_from_html(html_content: str, pdf_id: str, page_num: int, rand
"type": TestType.TABLE.value,
"cell": cell_text,
"max_diffs": 0,
"ignore_markdown_tables": True,
}
# Check cell up
@ -948,6 +949,7 @@ def generate_tests_from_html(html_content: str, pdf_id: str, page_num: int, rand
"type": "math",
"math": equation,
"max_diffs": 0,
"ignore_dollar_delimited": True,
}
)

View File

@ -633,6 +633,8 @@ class TableTest(BasePDFTest):
top_heading: str = ""
left_heading: str = ""
ignore_markdown_tables: bool = False
def __post_init__(self):
super().__post_init__()
if self.type != TestType.TABLE.value:
@ -670,8 +672,9 @@ class TableTest(BasePDFTest):
threshold = max(0.5, threshold)
# Parse tables based on content_type
md_tables = parse_markdown_tables(content)
tables_to_check.extend(md_tables)
if not self.ignore_markdown_tables:
md_tables = parse_markdown_tables(content)
tables_to_check.extend(md_tables)
html_tables = parse_html_tables(content)
tables_to_check.extend(html_tables)
@ -926,6 +929,8 @@ class BaselineTest(BasePDFTest):
class MathTest(BasePDFTest):
math: str
ignore_dollar_delimited: bool = False
def __post_init__(self):
super().__post_init__()
if self.type != TestType.MATH.value:
@ -941,12 +946,16 @@ class MathTest(BasePDFTest):
def run(self, content: str) -> Tuple[bool, str]:
# Store both the search pattern and the full pattern to replace
patterns = [
(r"\$\$(.+?)\$\$", r"\$\$(.+?)\$\$"), # $$...$$
(r"\\\((.+?)\\\)", r"\\\((.+?)\\\)"), # \(...\)
(r"\\\[(.+?)\\\]", r"\\\[(.+?)\\\]"), # \[...\]
(r"\$(.+?)\$", r"\$(.+?)\$"), # $...$
]
if not self.ignore_dollar_delimited:
patterns.extend([
(r"\$\$(.+?)\$\$", r"\$\$(.+?)\$\$"), # $$...$$
(r"\$(.+?)\$", r"\$(.+?)\$"), # $...$])
])
equations = []
modified_content = content

View File

@ -28,6 +28,7 @@ import sqlite3
import argparse
from pathlib import Path
import re
import os
def get_bench_urls(bench_data_dir):
@ -70,7 +71,125 @@ def local_path_to_short_hash(local_path):
return None
def check_contamination(bench_data_dir, metadata_jsonl_path, sqlite_db_path):
def find_and_handle_contaminated_files(metadata_jsonl_path, contaminated_pdf_ids, delete_mode=False):
"""Find and optionally delete files related to contaminated PDFs.
Returns:
List of files that were deleted or would be deleted
"""
# Get the base directory from metadata jsonl path
metadata_dir = Path(metadata_jsonl_path).parent
output_dir = metadata_dir.parent # Go up one level from metadata directory
# Get the name from the metadata jsonl filename (e.g., "synthetic" from "synthetic.jsonl")
name = Path(metadata_jsonl_path).stem
files_to_delete = []
for pdf_id in contaminated_pdf_ids:
# Pattern for files related to this pdf_id
# Based on mine_html_templates.py, the files are named with pattern:
# {pdf_id}_page{page_num}.{extension}
# Find HTML files
html_dir = output_dir / "html" / name
if html_dir.exists():
for html_file in html_dir.glob(f"{pdf_id}_page*.html"):
files_to_delete.append(html_file)
# Find PDF files (both original and rendered)
pdfs_dir = output_dir / "pdfs" / name
if pdfs_dir.exists():
for pdf_file in pdfs_dir.glob(f"{pdf_id}_page*.pdf"):
files_to_delete.append(pdf_file)
# Find markdown files in training directory
training_dir = output_dir / "training" / name
if training_dir.exists():
for md_file in training_dir.glob(f"{pdf_id}_page*.md"):
files_to_delete.append(md_file)
# Also check for PDF symlinks
for pdf_link in training_dir.glob(f"{pdf_id}_page*.pdf"):
files_to_delete.append(pdf_link)
# Find files in bench_data directory
bench_data_dir = output_dir / "bench_data"
# Check synthetic PDFs subdirectory
bench_synthetic_dir = bench_data_dir / "pdfs" / name
if bench_synthetic_dir.exists():
for pdf_file in bench_synthetic_dir.glob(f"{pdf_id}_page*.pdf"):
files_to_delete.append(pdf_file)
# Check claude_original subdirectory
claude_original_dir = bench_data_dir / "claude_original" / name
if claude_original_dir.exists():
for md_file in claude_original_dir.glob(f"{pdf_id}_page*.md"):
files_to_delete.append(md_file)
# Remove tests from bench_data JSONL file
jsonl_file = bench_data_dir / f"{name}.jsonl"
if jsonl_file.exists():
# Read all tests
remaining_tests = []
removed_tests = 0
with open(jsonl_file, 'r') as f:
for line in f:
try:
test = json.loads(line)
# Check if this test belongs to a contaminated PDF
# Test PDFs are in format "{name}/{pdf_id}_page{page_num}.pdf"
test_pdf = test.get('pdf', '')
is_contaminated = False
for pdf_id in contaminated_pdf_ids:
if f"{pdf_id}_page" in test_pdf:
is_contaminated = True
removed_tests += 1
break
if not is_contaminated:
remaining_tests.append(test)
except json.JSONDecodeError:
continue
if removed_tests > 0:
if delete_mode:
# Rewrite the file without contaminated tests
with open(jsonl_file, 'w') as f:
for test in remaining_tests:
f.write(json.dumps(test) + '\n')
print(f"Removed {removed_tests} tests from {jsonl_file}")
else:
print(f"Would remove {removed_tests} tests from {jsonl_file}")
# Print summary of files to delete
if files_to_delete:
print(f"\n{'Deleting' if delete_mode else 'Would delete'} {len(files_to_delete)} files:")
for file_path in sorted(files_to_delete): # Show first 10
relative_path = file_path.relative_to(output_dir) if output_dir in file_path.parents else file_path
print(f" - {relative_path}")
# Actually delete if in delete mode
if delete_mode:
try:
if file_path.is_symlink() or file_path.exists():
file_path.unlink()
except Exception as e:
print(f" Error deleting: {e}")
if delete_mode:
print(f"\nSuccessfully deleted {len(files_to_delete)} files")
else:
print(f"\nTo actually delete these files, run with --delete flag")
else:
print("\nNo files found to delete")
return files_to_delete
def check_contamination(bench_data_dir, metadata_jsonl_path, sqlite_db_path, delete_mode=False):
"""Main function to check for contamination between bench data and training data."""
print(f"Checking contamination...")
print(f"Bench data directory: {bench_data_dir}")
@ -173,26 +292,85 @@ def check_contamination(bench_data_dir, metadata_jsonl_path, sqlite_db_path):
# Step 4: Check for contamination
print("Step 4: Checking for contamination...")
contaminated_urls = bench_urls.intersection(real_urls)
# Track which PDF IDs are contaminated (including those with blank URLs)
contaminated_pdf_ids = set()
# Add PDF IDs with blank URLs to contaminated set
for entry in blank_url_entries:
pdf_id = entry.get('pdf_id', 'N/A')
if pdf_id != 'N/A':
contaminated_pdf_ids.add(pdf_id)
if contaminated_urls:
print(f"\n⚠️ CONTAMINATION DETECTED! Found {len(contaminated_urls)} matching URLs:")
for url in sorted(contaminated_urls)[:10]: # Show first 10
print(f" - {url}")
if len(contaminated_urls) > 10:
print(f" ... and {len(contaminated_urls) - 10} more")
# Find the pdf_ids that correspond to contaminated URLs
for metadata_entry in metadata_entries:
source_url = metadata_entry.get('source_url')
pdf_id = metadata_entry.get('pdf_id', 'N/A')
pdf_hash = None
# Process URL to get hash
if source_url.startswith("s3://"):
pdf_hash = s3_url_to_hash(source_url)
elif source_url.startswith("./"):
short_hash = local_path_to_short_hash(source_url)
if short_hash:
conn_temp = sqlite3.connect(sqlite_db_path)
cursor_temp = conn_temp.cursor()
cursor_temp.execute("SELECT full_hash FROM substr_to_full_hash WHERE pdf_hash = ?", (short_hash,))
result = cursor_temp.fetchone()
if result:
pdf_hash = result[0]
conn_temp.close()
# If we have a hash, look up the real URI
if pdf_hash:
conn_temp = sqlite3.connect(sqlite_db_path)
cursor_temp = conn_temp.cursor()
cursor_temp.execute("SELECT uri FROM pdf_mapping WHERE pdf_hash = ?", (pdf_hash,))
result = cursor_temp.fetchone()
conn_temp.close()
if result and result[0] and result[0] in contaminated_urls:
contaminated_pdf_ids.add(pdf_id)
# Check if we have any contamination (URL matches or blank URLs)
total_contaminated = len(contaminated_urls) + len(blank_url_entries)
if total_contaminated > 0:
print(f"\n⚠️ CONTAMINATION DETECTED!")
if contaminated_urls:
print(f" - Found {len(contaminated_urls)} matching URLs")
if blank_url_entries:
print(f" - Found {len(blank_url_entries)} entries with blank URLs (treated as contaminated)")
print(f" - Total contaminated PDF IDs: {len(contaminated_pdf_ids)}")
if contaminated_urls:
print(f"\nMatching URLs (first 10):")
for url in sorted(contaminated_urls)[:10]:
print(f" - {url}")
if len(contaminated_urls) > 10:
print(f" ... and {len(contaminated_urls) - 10} more")
# Handle file deletion/dry run
if contaminated_pdf_ids:
print(f"\nProcessing files for {len(contaminated_pdf_ids)} contaminated PDFs...")
find_and_handle_contaminated_files(metadata_jsonl_path, contaminated_pdf_ids, delete_mode)
else:
print("\n✅ No contamination detected. Bench URLs and training URLs are disjoint.")
print("\n✅ No contamination detected. Bench URLs and training URLs are disjoint, and no blank URLs found.")
# Print summary statistics
print(f"\nSummary:")
print(f" Bench URLs: {len(bench_urls)}")
print(f" Training URLs (mapped): {len(real_urls)}")
print(f" Contaminated URLs: {len(contaminated_urls)}")
print(f" Blank URL entries: {len(blank_url_entries)}")
print(f" Total contaminated: {total_contaminated}")
if bench_urls:
contamination_rate = (len(contaminated_urls) / len(bench_urls)) * 100
print(f" Contamination rate: {contamination_rate:.2f}%")
return len(contaminated_urls)
return total_contaminated
def main():
@ -211,7 +389,12 @@ def main():
"sqlite_db",
help="Path to SQLite database with pdf_mapping table"
)
parser.add_argument(
"--delete",
action="store_true",
help="Delete contaminated files (default is dry run)"
)
args = parser.parse_args()
# Validate paths
@ -231,7 +414,8 @@ def main():
contaminated_count = check_contamination(
args.bench_data_dir,
args.metadata_jsonl,
args.sqlite_db
args.sqlite_db,
delete_mode=args.delete
)
# Return non-zero exit code if contamination found