resolved all the mypy, black and isort issues and updated readme

This commit is contained in:
aman-17 2025-02-07 16:05:00 -08:00
parent 9bf3d35cdb
commit a036133fdd
17 changed files with 188 additions and 178 deletions

View File

@ -1,12 +1,12 @@
# olmOCR
Toolkit for training language models to work with PDF documents in the wild.
A toolkit for training language models to work with PDF documents in the wild.
<img src="https://github.com/user-attachments/assets/d70c8644-3e64-4230-98c3-c52fddaeccb6" alt="olmOCR Logo" width="300"/>
<br/>
Online demo: [https://olmocr.allen.ai/](https://olmocr.allen.ai/)
Try the online demo: [https://olmocr.allen.ai/](https://olmocr.allen.ai/)
What is included:
- A prompting strategy to get really good natural text parsing using ChatGPT 4o - [buildsilver.py](https://github.com/allenai/olmocr/blob/main/olmocr/data/buildsilver.py)
@ -22,15 +22,15 @@ Requirements:
- Recent NVIDIA GPU (tested on RTX 4090, L40S, A100, H100)
- 30GB of free disk space
You will need to install poppler-utils and some additional fonts as a prerequisite. olmOCR uses poppler to render its PDF images.
You will need to install poppler-utils and additional fonts for rendering PDF images.
Linux Ubuntu/Debian
Install dependencies (Ubuntu/Debian)
```bash
sudo apt-get update
sudo apt-get install poppler-utils ttf-mscorefonts-installer msttcorefonts fonts-crosextra-caladea fonts-crosextra-carlito gsfonts lcdf-typetools
```
Set up a conda environment, then clone and install the olmocr package
Set up a conda environment and install olmocr
```bash
conda create -n olmocr python=3.11
conda activate olmocr
@ -40,7 +40,7 @@ cd olmocr
pip install -e .
```
Finally, make sure you have sglang with [flashinfer](https://github.com/flashinfer-ai/flashinfer) installed if you want to run inference on your own GPU.
Install sglang with [flashinfer](https://github.com/flashinfer-ai/flashinfer) if you want to run inference on GPU.
```bash
pip install sgl-kernel==0.0.3.post1 --force-reinstall --no-deps
pip install "sglang[all]==0.4.2" --find-links https://flashinfer.ai/whl/cu124/torch2.4/flashinfer/
@ -48,37 +48,32 @@ pip install "sglang[all]==0.4.2" --find-links https://flashinfer.ai/whl/cu124/to
**BETA TESTER NOTE:**
If you are a beta tester, you will need to login using the hugging-face CLI
to make sure you have access to https://huggingface.co/allenai/olmocr-preview
`huggingface-cli login`
If youre a beta tester, log in with Hugging Face CLI to access (olmOCR)[https://huggingface.co/allenai/olmocr-preview] preview model:
``` bash
huggingface-cli login
```
### Local Usage Example
The easiest way to try out olmOCR on one or two PDFs is to check out the [web demo](https://olmocr.allen.ai/).
Once you are ready to run locally, a local GPU is required, as inference is powered by [sglang](https://github.com/sgl-project/sglang)
under the hood.
This command will convert one PDF into a directory called `localworkspace`:
For quick testing, try the [web demo](https://olmocr.allen.ai/). To run locally, a GPU is required, as inference is powered by [sglang](https://github.com/sgl-project/sglang) under the hood.
Convert a Single PDF:
```bash
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/horribleocr.pdf
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/horribleocr.pdf # will convert one PDF into a directory called `localworkspace`
```
You can also bulk convert many PDFS with a glob pattern:
Convert Multiple PDFs:
```bash
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/*.pdf
```
#### Viewing Results
Once that finishes, output is stored as [Dolma](https://github.com/allenai/dolma)-style JSONL inside of the `./localworkspace/results` directory.
Extracted text is stored as [Dolma](https://github.com/allenai/dolma)-style JSONL inside of the `./localworkspace/results` directory.
```bash
cat localworkspace/results/output_*.jsonl
```
You can view your documents side-by-side with the original PDF renders using the `dolmaviewer` command.
View results side-by-side with the original PDFs (uses `dolmaviewer` command):
```bash
python -m olmocr.viewer.dolmaviewer localworkspace/results/output_*.jsonl
@ -106,7 +101,7 @@ Now on any subsequent nodes, just run this and they will start grabbing items fr
python -m olmocr.pipeline s3://my_s3_bucket/pdfworkspaces/exampleworkspace
```
If you are at AI2 and want to linearize millions of PDFs efficiently using [beaker](https://www.beaker.org), just add the `--beaker`
If you are at Ai2 and want to linearize millions of PDFs efficiently using [beaker](https://www.beaker.org), just add the `--beaker`
flag. This will prepare the workspace on your local machine, and then launch N GPU workers in the cluster to start
converting PDFs.

View File

@ -6,13 +6,15 @@ import os
import random
import re
import sqlite3
from collections import Counter
from concurrent.futures import ProcessPoolExecutor, as_completed
from typing import Optional
from urllib.parse import urlparse
from tqdm import tqdm
def parse_pdf_hash(pretty_pdf_path: str) -> str:
def parse_pdf_hash(pretty_pdf_path: str) -> Optional[str]:
pattern = r"s3://ai2-s2-pdfs/([a-f0-9]{4})/([a-f0-9]+)\.pdf-\d+"
match = re.match(pattern, pretty_pdf_path)
if match:
@ -58,7 +60,7 @@ def cache_athena_csv_to_db(athena_csv_path: str) -> str:
return db_path
def get_uri_from_db(db_path: str, pdf_hash: str) -> str:
def get_uri_from_db(db_path: str, pdf_hash: str) -> Optional[str]:
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
cursor.execute("SELECT uri FROM pdf_mapping WHERE pdf_hash = ?", (pdf_hash,))
@ -154,7 +156,7 @@ def main():
for cid, uri, domain in all_rows:
writer.writerow([cid, uri if uri else "", domain if domain else ""])
domain_counter = collections.Counter()
domain_counter: Counter[str] = Counter()
for _, _, domain in all_rows:
if domain:
domain_counter[domain] += 1

View File

@ -1,6 +1,7 @@
import base64
import io
import subprocess
from typing import List
from PIL import Image
@ -25,12 +26,11 @@ def get_pdf_media_box_width_height(local_pdf_path: str, page_num: int) -> tuple[
# Parse the output to find MediaBox
output = result.stdout
media_box = None
for line in output.splitlines():
if "MediaBox" in line:
media_box = line.split(":")[1].strip().split()
media_box = [float(x) for x in media_box]
media_box_str: List[str] = line.split(":")[1].strip().split()
media_box: List[float] = [float(x) for x in media_box_str]
return abs(media_box[0] - media_box[2]), abs(media_box[3] - media_box[1])
raise ValueError("MediaBox not found in the PDF info.")

View File

@ -144,8 +144,8 @@ def get_estimated_space_usage(folder_path):
def get_next_work_item(folder_path):
all_states = get_state(folder_path)
all_states = [s for s in all_states.values() if s["state"] not in FINISHED_STATES]
all_states = list(get_state(folder_path).values())
all_states = [s for s in all_states if s["state"] not in FINISHED_STATES]
all_states.sort(key=lambda s: s["last_checked"])
return all_states[0] if len(all_states) > 0 else None

View File

@ -27,11 +27,17 @@ class Comparison:
@property
def comparison_a_method(self):
return re.search(r"page[0-9]+_(\w+)\.md$", self.comparison_a_path).group(1)
match = re.search(r"page[0-9]+_(\w+)\.md$", self.comparison_a_path)
if match:
return match.group(1)
raise ValueError(f"No match found in path: {self.comparison_a_path}")
@property
def comparison_b_method(self):
return re.search(r"page[0-9]+_(\w+)\.md$", self.comparison_b_path).group(1)
match = re.search(r"page[0-9]+_(\w+)\.md$", self.comparison_b_path)
if match:
return match.group(1)
raise ValueError(f"No match found in path: {self.comparison_b_path}")
def process_single_pdf(pdf_path, all_mds, comparisons, segmenter_name="spacy"):

View File

@ -230,8 +230,8 @@ def list_jsonl_files(path: str) -> list:
# Returns the average Levenshtein distance match between the data
def process_jsonl_file(jsonl_file, gold_data, comparer):
page_data = {}
total_alignment_score = 0
char_weighted_alignment_score = 0
total_alignment_score: float = 0.0
char_weighted_alignment_score: float = 0.0
total_pages = 0
total_chars = 0
total_errors = 0

View File

@ -1,9 +1,10 @@
import csv
import re
from collections import defaultdict
from typing import Any, DefaultDict
from urllib.parse import parse_qs, urlencode, urlsplit, urlunsplit
import requests
import requests # type: ignore
def fetch_review_page_html(url):
@ -108,7 +109,7 @@ def build_comparison_report(entries_dict, datastore):
comparisons[(A, B)] = [A_wins, B_wins],
where A < B lexicographically in that tuple.
"""
comparisons = defaultdict(lambda: [0, 0])
comparisons: DefaultDict[Any, list[int]] = defaultdict(lambda: [0, 0])
for entry_id, vote in datastore.items():
if entry_id not in entries_dict:

View File

@ -2,6 +2,7 @@ import logging
import re
import subprocess
from collections import Counter
from typing import Any, Dict, List
from lingua import Language, LanguageDetectorBuilder
from pypdf import PdfReader
@ -142,7 +143,7 @@ if __name__ == "__main__":
# Load the list of S3 paths with a progress bar
with open("/home/ubuntu/s2pdf_paths_1M.txt", "r") as f:
s3_work_paths = list(filter(None, (line.strip() for line in tqdm(f, desc="Loading paths"))))
s3_work_paths: List[str] = list(filter(None, (line.strip() for line in tqdm(f, desc="Loading paths"))))
# Initialize the PDF filter
filter = PdfFilter(
@ -173,7 +174,7 @@ if __name__ == "__main__":
while pending_futures:
# Wait for the next future to complete
done, _ = wait(
done, _ = wait( # type: ignore
pending_futures.keys(),
timeout=0.1,
return_when=FIRST_COMPLETED,

View File

@ -1,7 +1,7 @@
import asyncio
import time
from collections import defaultdict, deque
from typing import Dict
from typing import Any, Deque, Dict, List, Set
class MetricsKeeper:
@ -15,7 +15,7 @@ class MetricsKeeper:
self.window = window # Time window in seconds
self.start_time = time.time() # Timestamp when MetricsKeeper was created
self.total_metrics = defaultdict(int) # Cumulative metrics since start
self.window_metrics = deque() # Deque to store (timestamp, metrics_dict)
self.window_metrics: Deque[Any] = deque() # Deque to store (timestamp, metrics_dict)
self.window_sum = defaultdict(int) # Sum of metrics within the window
def add_metrics(self, **kwargs):
@ -108,16 +108,16 @@ class WorkerTracker:
"""
async with self.lock:
# Determine all unique states across all workers
all_states = set()
all_states: Set[str] = set()
for states in self.worker_status.values():
all_states.update(states.keys())
all_states = sorted(all_states)
sorted_states: List[str] = sorted(all_states)
headers = ["Worker ID"] + all_states
headers = ["Worker ID"] + sorted_states # type: ignore
rows = []
for worker_id, states in sorted(self.worker_status.items()):
row = [str(worker_id)]
for state in all_states:
for state in sorted_states:
count = states.get(state, 0)
row.append(str(count))
rows.append(row)

View File

@ -115,7 +115,7 @@ async def build_page_query(local_pdf_path: str, page: int, target_longest_image_
process_pool, partial(get_anchor_text, pdf_engine="pdfreport", target_length=target_anchor_text_len), local_pdf_path, page
)
image_base64, anchor_text = await asyncio.gather(image_base64, anchor_text)
image_base64, anchor_text = await asyncio.gather(image_base64, anchor_text) # type: ignore
if image_rotation != 0:
image_bytes = base64.b64decode(image_base64)
with Image.open(BytesIO(image_bytes)) as img:
@ -659,7 +659,7 @@ async def metrics_reporter(work_queue):
def submit_beaker_job(args):
from beaker import (
from beaker import ( # type: ignore
Beaker,
Constraints,
EnvVar,

View File

@ -35,7 +35,7 @@ def get_anchor_text(
scores = {label: get_document_coherency(text) for label, text in options.items()}
best_option_label = max(scores, key=scores.get)
best_option_label = max(scores, key=scores.get) # type: ignore
best_option = options[best_option_label]
print(f"topcoherency chosen: {best_option_label}")
@ -194,7 +194,7 @@ def _merge_image_elements(images: List[ImageElement], tolerance: float = 0.5) ->
union(i, j)
# Group images by their root parent
groups = {}
groups: dict[int, list[int]] = {}
for i in range(n):
root = find(i)
groups.setdefault(root, []).append(i)
@ -268,21 +268,21 @@ def _linearize_pdf_report(report: PageReport, max_length: int = 4000) -> str:
# Process text elements
text_strings = []
for element in report.text_elements:
if len(element.text.strip()) == 0:
for element in report.text_elements: # type: ignore
if len(element.text.strip()) == 0: # type: ignore
continue
element_text = _cleanup_element_text(element.text)
text_str = f"[{element.x:.0f}x{element.y:.0f}]{element_text}\n"
element_text = _cleanup_element_text(element.text) # type: ignore
text_str = f"[{element.x:.0f}x{element.y:.0f}]{element_text}\n" # type: ignore
text_strings.append((element, text_str))
# Combine all elements with their positions for sorting
all_elements = []
all_elements: list[tuple[str, ImageElement, str, tuple[float, float]]] = []
for elem, s in image_strings:
position = (elem.bbox.x0, elem.bbox.y0)
all_elements.append(("image", elem, s, position))
for elem, s in text_strings:
position = (elem.x, elem.y)
position = (elem.x, elem.y) # type: ignore
all_elements.append(("text", elem, s, position))
# Calculate total length
@ -311,7 +311,7 @@ def _linearize_pdf_report(report: PageReport, max_length: int = 4000) -> str:
max_x_text = max(text_elements, key=lambda e: e.x)
min_y_text = min(text_elements, key=lambda e: e.y)
max_y_text = max(text_elements, key=lambda e: e.y)
edge_elements.update([min_x_text, max_x_text, min_y_text, max_y_text])
edge_elements.update([min_x_text, max_x_text, min_y_text, max_y_text]) # type: ignore
# Keep track of element IDs to prevent duplication
selected_element_ids = set()

View File

@ -12,7 +12,7 @@ from typing import List, Optional
from urllib.parse import urlparse
import boto3
import requests
import requests # type: ignore
import zstandard as zstd
from boto3.s3.transfer import TransferConfig
from botocore.config import Config
@ -58,7 +58,7 @@ def expand_s3_glob(s3_client, s3_glob: str) -> dict[str, str]:
for page in paginator.paginate(Bucket=bucket, Prefix=prefix):
for obj in page.get("Contents", []):
key = obj["Key"]
if glob.fnmatch.fnmatch(key, posixpath.join(prefix, pattern)):
if glob.fnmatch.fnmatch(key, posixpath.join(prefix, pattern)): # type: ignore
matched[f"s3://{bucket}/{key}"] = obj["ETag"].strip('"')
return matched

View File

@ -33,7 +33,7 @@ from omegaconf import OmegaConf as om
from omegaconf.errors import OmegaConfBaseException
from rich.console import Console
from rich.syntax import Syntax
from yaml import safe_load
from yaml import safe_load # type: ignore
from .errors import DolmaRefineError
@ -116,7 +116,7 @@ def _make_parser(parser: A, config: Type[DataClass], prefix: Optional[str] = Non
# here's where we check if T is a dataclass
if is_dataclass(typ_):
# recursively add subparsers
_make_parser(parser, typ_, prefix=field_name)
_make_parser(parser, typ_, prefix=field_name) # type: ignore
continue
if typ_ is bool:

View File

@ -52,7 +52,7 @@ def list_dataset_files(s3_glob_path: str):
return glob.glob(s3_glob_path)
def load_jsonl_into_ds(s3_glob_path: str, first_n_files: int = None) -> Dataset:
def load_jsonl_into_ds(s3_glob_path: str, first_n_files: Optional[int] = None) -> Dataset:
"""
Loads JSONL files from the specified S3 path into a Hugging Face Dataset.
"""

View File

@ -576,24 +576,26 @@ class Dropout(nn.Dropout):
@dataclass
class VisionBackboneConfig:
image_default_input_size: Tuple[int, int] = (336, 336)
image_patch_size: int = 14
image_pos_patch_size: int = 14
image_emb_dim: int = 1024
image_num_heads: int = 16
image_num_key_value_heads: int = 16
image_num_layers: int = 24
image_head_dim: int = 64
image_mlp_dim: int = 4096
image_mlp_activations: str = "gelu"
image_dropout_rate: float = 0.0
image_num_pos: int = 577
image_norm_eps: float = 1e-5
attention_dropout: float = 0.0
residual_dropout: float = 0.0
initializer_range: float = 0.02
fsdp_wrap: bool = False
resize_mode: str = "default"
def __init__(self):
super().__init__()
self.image_default_input_size: Tuple[int, int] = (336, 336)
self.image_patch_size: int = 14
self.image_pos_patch_size: int = 14
self.image_emb_dim: int = 1024
self.image_num_heads: int = 16
self.image_num_key_value_heads: int = 16
self.image_num_layers: int = 24
self.image_head_dim: int = 64
self.image_mlp_dim: int = 4096
self.image_mlp_activations: str = "gelu"
self.image_dropout_rate: float = 0.0
self.image_num_pos: int = 577
self.image_norm_eps: float = 1e-5
self.attention_dropout: float = 0.0
self.residual_dropout: float = 0.0
self.initializer_range: float = 0.02
self.fsdp_wrap: bool = False
self.resize_mode: str = "default"
def __post_init__(self):
self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
@ -606,59 +608,61 @@ class VisionBackboneConfig:
@dataclass
class FullMolmoConfig:
d_model: int = 768
n_heads: int = 12
n_kv_heads: Optional[int] = None
qkv_bias: bool = False
clip_qkv: Optional[float] = None
n_layers: int = 12
mlp_ratio: int = 4
mlp_hidden_size: Optional[int] = None
activation_type: str = "swiglu"
block_group_size: int = 1
rope: bool = True
rope_full_precision: bool = True
rope_theta: float = 10000.0
rope_impl: str = "interleave"
vision_backbone: Optional[VisionBackboneConfig] = None
attention_type: str = "sdpa"
float32_attention: bool = True
attention_dropout: float = 0.1
response_attention_dropout: float = 0.0
multi_query_attention: Optional[bool] = None
attention_layer_norm: bool = False
residual_dropout: float = 0.1
embedding_dropout: float = 0.1
layer_norm_type: str = "default"
layer_norm_with_affine: bool = True
layer_norm_eps: Optional[float] = None
attention_layer_norm_with_affine: bool = True
max_sequence_length: int = 1024
max_position_embeddings: Optional[int] = None
include_bias: bool = True
bias_for_layer_norm: Optional[bool] = None
scale_logits: bool = False
vocab_size: int = 50257
embedding_size: Optional[int] = 50304
additional_vocab_size: Optional[int] = None
new_embedding_init_range: float = 0.02
weight_tying: bool = True
pad_token_id: int = -1
init_device: Optional[str] = None
init_std: float = 0.02
init_cutoff_factor: Optional[float] = None
norm_after: bool = False
precision: Optional[str] = None
image_padding_embed: Optional[str] = None
vit_layers: Tuple = (-1,)
image_pooling_h: int = 2
image_pooling_w: int = 2
image_pooling_2d: str = "attention"
image_projector: str = "mlp"
image_feature_dropout: float = 0.0
initializer_range: float = 0.02
normalize_input_embeds: bool = False
use_position_ids: bool = True
def __init__(self):
super().__init__()
self.d_model: int = 768
self.n_heads: int = 12
self.n_kv_heads: Optional[int] = None
self.qkv_bias: bool = False
self.clip_qkv: Optional[float] = None
self.n_layers: int = 12
self.mlp_ratio: int = 4
self.mlp_hidden_size: Optional[int] = None
self.activation_type: str = "swiglu"
self.block_group_size: int = 1
self.rope: bool = True
self.rope_full_precision: bool = True
self.rope_theta: float = 10000.0
self.rope_impl: str = "interleave"
self.vision_backbone: Optional[VisionBackboneConfig] = None
self.attention_type: str = "sdpa"
self.float32_attention: bool = True
self.attention_dropout: float = 0.1
self.response_attention_dropout: float = 0.0
self.multi_query_attention: Optional[bool] = None
self.attention_layer_norm: bool = False
self.residual_dropout: float = 0.1
self.embedding_dropout: float = 0.1
self.layer_norm_type: str = "default"
self.layer_norm_with_affine: bool = True
self.layer_norm_eps: Optional[float] = None
self.attention_layer_norm_with_affine: bool = True
self.max_sequence_length: int = 1024
self.max_position_embeddings: Optional[int] = None
self.include_bias: bool = True
self.bias_for_layer_norm: Optional[bool] = None
self.scale_logits: bool = False
self.vocab_size: int = 50257
self.embedding_size: Optional[int] = 50304
self.additional_vocab_size: Optional[int] = None
self.new_embedding_init_range: float = 0.02
self.weight_tying: bool = True
self.pad_token_id: int = -1
self.init_device: Optional[str] = None
self.init_std: float = 0.02
self.init_cutoff_factor: Optional[float] = None
self.norm_after: bool = False
self.precision: Optional[str] = None
self.image_padding_embed: Optional[str] = None
self.vit_layers: Tuple = (-1,)
self.image_pooling_h: int = 2
self.image_pooling_w: int = 2
self.image_pooling_2d: str = "attention"
self.image_projector: str = "mlp"
self.image_feature_dropout: float = 0.0
self.initializer_range: float = 0.02
self.normalize_input_embeds: bool = False
self.use_position_ids: bool = True
@property
def effective_n_kv_heads(self) -> int:
@ -687,7 +691,7 @@ class FullMolmoConfig:
@property
def image_patch_size(self):
assert self.vision_backbone is not None
return self.visoin_backbone.image_patch_size
return self.vision_backbone.image_patch_size
def llm_patches_per_crop(self):
h, w = self.image_num_patch
@ -705,7 +709,7 @@ class ViTMLP(nn.Module):
def __init__(self, config: FullMolmoConfig):
super().__init__()
self.config = config
v_cfg = config.vision_backbone
v_cfg = config.vision_backbone or VisionBackboneConfig()
self.w1 = nn.Linear(
v_cfg.image_emb_dim,
@ -725,7 +729,7 @@ class ViTMLP(nn.Module):
)
def reset_parameters(self):
v_cfg = self.config.vision_backbone
v_cfg = self.config.vision_backbone or VisionBackboneConfig()
nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0)
nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0)
nn.init.zeros_(self.w1.bias)
@ -744,7 +748,7 @@ class ResidualAttentionBlock(nn.Module):
super().__init__()
self.config = config
v_cfg = config.vision_backbone
v_cfg = config.vision_backbone or VisionBackboneConfig()
self.attention = MultiHeadDotProductAttention(config)
self.feed_forward = ViTMLP(config)
self.attention_norm = nn.LayerNorm(
@ -777,7 +781,7 @@ class BlockCollection(nn.Module):
self.config = config
self.grad_checkpointing: bool = False
v_cfg = config.vision_backbone
v_cfg = config.vision_backbone or VisionBackboneConfig()
self.resblocks = nn.ModuleList([ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers)])
def reset_parameters(self):
@ -805,7 +809,7 @@ class VisionTransformer(nn.Module):
super().__init__()
self.config = config
v_cfg = config.vision_backbone
v_cfg = config.vision_backbone or VisionBackboneConfig()
# class embeddings and positional embeddings
self.scale = v_cfg.image_emb_dim**-0.5
self.class_embedding = nn.Parameter(
@ -848,15 +852,15 @@ class VisionTransformer(nn.Module):
pos_emb = pos_emb.reshape((int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]))
(patch_num_0, patch_num_1) = patch_num
(patch_num_0, patch_num_1) = patch_num # type: ignore
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1: # type: ignore
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
# antialias: default True in jax.image.resize
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
pos_emb = F.interpolate(
pos_emb,
size=(patch_num_0, patch_num_1),
size=(patch_num_0, patch_num_1), # type: ignore
mode="bicubic",
align_corners=False,
antialias=True,
@ -867,12 +871,12 @@ class VisionTransformer(nn.Module):
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
return x
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
def forward(self, x: torch.Tensor, patch_num: Optional[int] = None) -> List[torch.Tensor]:
"""
: param x: (batch_size, num_patch, n_pixels)
"""
if patch_num is None:
patch_num = self.config.vision_backbone.image_num_patch
patch_num = self.config.vision_backbone.image_num_patch # type: ignore
B, N, D = x.shape
x = self.patch_embedding(x)
@ -893,7 +897,7 @@ class MultiHeadDotProductAttention(nn.Module):
self.config = config
self.use_bias = use_bias
v_cfg = config.vision_backbone
v_cfg = config.vision_backbone or VisionBackboneConfig()
self.embed_dim = v_cfg.image_emb_dim
self.num_heads = v_cfg.image_num_heads
self.head_dim = v_cfg.image_head_dim
@ -985,12 +989,12 @@ class MultiHeadDotProductAttention(nn.Module):
elif self.config.attention_type == "sdpa":
if self.config.float32_attention and not torch.is_autocast_enabled():
xv = xv.to(torch.float32)
attn_output = F.scaled_dot_product_attention(
attn_output = F.scaled_dot_product_attention( # type: ignore
xq.transpose(1, 2).contiguous(),
xk.transpose(1, 2).contiguous(),
xv.transpose(1, 2).contiguous(),
is_causal=False,
dropout_p=self.config.vision_backbone.attention_dropout,
dropout_p=self.config.vision_backbone.attention_dropout, # type: ignore
).transpose(1, 2)
else:
raise NotImplementedError(self.config.attention_type)
@ -1023,7 +1027,7 @@ class MultiHeadAttentionPool(nn.Module):
self.mean_residual = mean_residual
self.query = query
v_cfg = config.vision_backbone
v_cfg = config.vision_backbone or VisionBackboneConfig()
input_dim = v_cfg.image_emb_dim
self.embed_dim = v_cfg.image_emb_dim * factor
self.num_heads = v_cfg.image_num_heads
@ -1202,18 +1206,17 @@ class OLMoVisionBackbone(nn.Module):
super().__init__()
self.config = config
self.image_vit = VisionTransformer(config)
input_dim: int = None
input_dim: Optional[int] = None
self.image_pooling_2d: nn.Module = None
if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}:
self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
input_dim = config.vision_backbone.image_emb_dim
input_dim = config.vision_backbone.image_emb_dim # type: ignore
elif config.image_pooling_2d == ImagePooling2DType.attention_2wide:
cfg = deepcopy(config)
cfg.vision_backbone.image_emb_dim *= 2
cfg.vision_backbone.image_head_dim *= 2
cfg.vision_backbone.image_emb_dim *= 2 # type: ignore
cfg.vision_backbone.image_head_dim *= 2 # type: ignore
self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False)
input_dim = cfg.vision_backbone.image_emb_dim
input_dim = cfg.vision_backbone.image_emb_dim # type: ignore
elif config.image_pooling_2d == ImagePooling2DType.attention_v2:
assert config.vit_layers is not None
use_bias = True
@ -1232,11 +1235,11 @@ class OLMoVisionBackbone(nn.Module):
query=query,
is_vit_layer=False,
)
input_dim = config.vision_backbone.image_emb_dim * factor
input_dim = config.vision_backbone.image_emb_dim * factor # type: ignore
elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]:
self.image_pooling_2d = None
nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
input_dim = nlayers * config.vision_backbone.image_emb_dim
input_dim = nlayers * config.vision_backbone.image_emb_dim # type: ignore
else:
raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}")
@ -1244,9 +1247,9 @@ class OLMoVisionBackbone(nn.Module):
# `MLP` assume the activation takes two inputs, so it must be a 'llama' version
if config.activation_type == ActivationType.swiglu:
mlp_config = replace(config, activation_type=ActivationType.llama_swiglu)
mlp_config = replace(config, activation_type=ActivationType.llama_swiglu) # type: ignore
elif config.activation_type == ActivationType.gelu:
mlp_config = replace(config, activation_type=ActivationType.llama_geglu)
mlp_config = replace(config, activation_type=ActivationType.llama_geglu) # type: ignore
else:
mlp_config = config
if config.image_projector == ImageProjectType.mlpx2:
@ -1291,7 +1294,7 @@ class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
self.pad_embed = None
if config.image_padding_embed:
image_dim = v_cfg.image_emb_dim * len(self.config.vit_layers)
image_dim = v_cfg.image_emb_dim * len(self.config.vit_layers) # type: ignore
if config.image_padding_embed in ["pad_embed", "regress"]:
self.pad_embed = nn.Parameter(torch.zeros((image_dim,), device=config.init_device))
elif config.image_padding_embed == "pad_and_partial_pad":
@ -1349,13 +1352,13 @@ class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
assert image_masks is not None
if cfg.image_padding_embed == "pad_embed":
all_pad = (image_masks == 0).to(dtype=torch.float32)
pad_embed = self.pad_embed[None, None, None, :]
pad_embed = self.pad_embed[None, None, None, :] # type: ignore
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
elif cfg.image_padding_embed == "regress":
pad_embed = self.pad_embed[None, None, None, :]
pad_embed = self.pad_embed[None, None, None, :] # type: ignore
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1)
elif cfg.image_padding_embed == "pad_and_partial_pad":
pad_embed = self.pad_embed[:, None, None, None, :]
pad_embed = self.pad_embed[:, None, None, None, :] # type: ignore
all_pad = image_masks == 0
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=image_features.dtype)
all_pad = all_pad.to(dtype=image_features.dtype)
@ -1557,12 +1560,12 @@ class LayerNormBase(nn.Module):
self.eps = self.config.layer_norm_eps or eps
self.normalized_shape = (size or config.d_model,)
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device))
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device)) # type: ignore
use_bias = self.config.bias_for_layer_norm
if use_bias is None:
use_bias = self.config.include_bias
if use_bias:
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device))
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device)) # type: ignore
else:
self.register_parameter("bias", None)
else:
@ -1593,7 +1596,7 @@ class RMSLayerNorm(LayerNormBase):
elementwise_affine: Optional[bool] = None,
eps: float = 1e-5,
):
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) # type: ignore
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.autocast(enabled=False, device_type=x.device.type):
@ -1625,7 +1628,7 @@ class LayerNorm(LayerNormBase):
elementwise_affine: Optional[bool] = None,
eps: float = 1e-05,
):
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) # type: ignore
self.low_precision = low_precision
def forward(self, x: torch.Tensor) -> torch.Tensor:
@ -1663,7 +1666,7 @@ class Molmo(nn.Module):
if self.config.additional_vocab_size is not None:
wte = Embedding(
config.embedding_size or config.vocab_size,
config.additional_vocab_size,
config.additional_vocab_size, # type: ignore
config.d_model,
device=config.init_device,
initializer_range=config.initializer_range,
@ -1680,7 +1683,7 @@ class Molmo(nn.Module):
)
)
blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)] # type: ignore
if self.config.block_group_size > 1:
raise NotImplementedError()
else:
@ -1804,14 +1807,14 @@ class Molmo(nn.Module):
if self.config.use_position_ids and attention_mask is None:
attention_mask = input_ids != -1
if subsegment_ids is not None:
if subsegment_ids is not None and attention_mask is not None:
assert not use_cache, "Subsegment_ids cannot be used with cache."
subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1)
attention_mask = subsegment_mask.to(attention_mask.dtype) * attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)
if position_ids is None:
raise ValueError("Positioned ids must be given if using subsegment_ids")
else:
if self.config.use_position_ids and position_ids is None:
if self.config.use_position_ids and position_ids is None and attention_mask is not None:
position_ids = torch.clamp(
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
min=0,
@ -1824,10 +1827,10 @@ class Molmo(nn.Module):
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
num_image: Optional[int] = None
if images is not None:
if images is not None and image_input_idx is not None:
# shape: (batch_size, num_image, num_patch, d_model)
# cls_embed: (batch_size, num_image, d_model)
image_features, cls_embed = self.vision_backbone(images, image_masks)
image_features, cls_embed = self.vision_backbone(images, image_masks) # type: ignore
num_image, num_patch = image_features.shape[1:3]
assert image_input_idx.shape == (batch_size, num_image, num_patch)
@ -2008,8 +2011,8 @@ class MolmoForCausalLM(PreTrainedModel):
rope_theta=config.rope_theta,
layer_norm_eps=config.layer_norm_eps,
layer_norm_type=config.layer_norm_type,
vit_layers=[-2, -9],
vision_backbone=VisionBackboneConfig(
vit_layers=[-2, -9], # type: ignore
vision_backbone=VisionBackboneConfig( # type: ignore
image_default_input_size=(336, 336),
image_patch_size=14,
image_pos_patch_size=14,
@ -2053,7 +2056,7 @@ class MolmoForCausalLM(PreTrainedModel):
output_hidden_states: Optional[bool] = None,
append_last_valid_logits: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[
cache_position: Optional[ # type: ignore
Cache
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
) -> Union[Tuple, CausalLMOutputWithPast]:
@ -2079,7 +2082,7 @@ class MolmoForCausalLM(PreTrainedModel):
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
last_logits_only=last_logits_only,
last_logits_only=last_logits_only, # type: ignore
output_hidden_states=output_hidden_states,
append_last_valid_logits=append_last_valid_logits,
)
@ -2153,7 +2156,7 @@ class MolmoForCausalLM(PreTrainedModel):
input_ids = batch["input_ids"]
batch_size, seq_len = input_ids.shape
attention_mask = batch.get("attention_mask", None)
max_new_tokens = generation_config.max_new_tokens
max_new_tokens = generation_config.max_new_tokens # type: ignore
assert max_new_tokens is not None
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len
position_ids: Optional[torch.Tensor] = None

View File

@ -5,8 +5,9 @@ import hashlib
import logging
import os
import random
from asyncio import Queue
from dataclasses import dataclass
from typing import List, Optional
from typing import Any, List, Optional
from olmocr.s3_utils import (
download_zstd_csv,
@ -196,7 +197,7 @@ class LocalWorkQueue(WorkQueue):
os.makedirs(self._locks_dir, exist_ok=True)
# Internal queue
self._queue = asyncio.Queue()
self._queue: Queue[Any] = Queue()
async def populate_queue(self, work_paths: List[str], items_per_group: int) -> None:
"""
@ -401,7 +402,7 @@ class S3WorkQueue(WorkQueue):
self._index_path = os.path.join(self.workspace_path, "work_index_list.csv.zstd")
self._output_glob = os.path.join(self.workspace_path, "results", "*.jsonl")
self._queue = asyncio.Queue()
self._queue: Queue[Any] = Queue()
async def populate_queue(self, work_paths: List[str], items_per_group: int) -> None:
"""

View File

@ -35,6 +35,7 @@ MODEL_FINETUNED_PATH = (
"s3://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/"
)
@unittest.skip("Skip these tests when running CI, they are mostly for experimentation")
class TestSglangServer(unittest.IsolatedAsyncioTestCase):
async def asyncSetUp(self):