diff --git a/README.md b/README.md
index 4c6162f..c1661c3 100644
--- a/README.md
+++ b/README.md
@@ -1,12 +1,12 @@
# olmOCR
-Toolkit for training language models to work with PDF documents in the wild.
+A toolkit for training language models to work with PDF documents in the wild.
-Online demo: [https://olmocr.allen.ai/](https://olmocr.allen.ai/)
+Try the online demo: [https://olmocr.allen.ai/](https://olmocr.allen.ai/)
What is included:
- A prompting strategy to get really good natural text parsing using ChatGPT 4o - [buildsilver.py](https://github.com/allenai/olmocr/blob/main/olmocr/data/buildsilver.py)
@@ -22,15 +22,15 @@ Requirements:
- Recent NVIDIA GPU (tested on RTX 4090, L40S, A100, H100)
- 30GB of free disk space
-You will need to install poppler-utils and some additional fonts as a prerequisite. olmOCR uses poppler to render its PDF images.
+You will need to install poppler-utils and additional fonts for rendering PDF images.
-Linux Ubuntu/Debian
+Install dependencies (Ubuntu/Debian)
```bash
sudo apt-get update
sudo apt-get install poppler-utils ttf-mscorefonts-installer msttcorefonts fonts-crosextra-caladea fonts-crosextra-carlito gsfonts lcdf-typetools
```
-Set up a conda environment, then clone and install the olmocr package
+Set up a conda environment and install olmocr
```bash
conda create -n olmocr python=3.11
conda activate olmocr
@@ -40,7 +40,7 @@ cd olmocr
pip install -e .
```
-Finally, make sure you have sglang with [flashinfer](https://github.com/flashinfer-ai/flashinfer) installed if you want to run inference on your own GPU.
+Install sglang with [flashinfer](https://github.com/flashinfer-ai/flashinfer) if you want to run inference on GPU.
```bash
pip install sgl-kernel==0.0.3.post1 --force-reinstall --no-deps
pip install "sglang[all]==0.4.2" --find-links https://flashinfer.ai/whl/cu124/torch2.4/flashinfer/
@@ -48,37 +48,32 @@ pip install "sglang[all]==0.4.2" --find-links https://flashinfer.ai/whl/cu124/to
**BETA TESTER NOTE:**
-If you are a beta tester, you will need to login using the hugging-face CLI
-to make sure you have access to https://huggingface.co/allenai/olmocr-preview
-
-`huggingface-cli login`
-
+If you’re a beta tester, log in with Hugging Face CLI to access (olmOCR)[https://huggingface.co/allenai/olmocr-preview] preview model:
+``` bash
+huggingface-cli login
+```
### Local Usage Example
-The easiest way to try out olmOCR on one or two PDFs is to check out the [web demo](https://olmocr.allen.ai/).
-
-Once you are ready to run locally, a local GPU is required, as inference is powered by [sglang](https://github.com/sgl-project/sglang)
-under the hood.
-
-This command will convert one PDF into a directory called `localworkspace`:
+For quick testing, try the [web demo](https://olmocr.allen.ai/). To run locally, a GPU is required, as inference is powered by [sglang](https://github.com/sgl-project/sglang) under the hood.
+Convert a Single PDF:
```bash
-python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/horribleocr.pdf
+python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/horribleocr.pdf # will convert one PDF into a directory called `localworkspace`
```
-You can also bulk convert many PDFS with a glob pattern:
+Convert Multiple PDFs:
```bash
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/*.pdf
```
#### Viewing Results
-Once that finishes, output is stored as [Dolma](https://github.com/allenai/dolma)-style JSONL inside of the `./localworkspace/results` directory.
+Extracted text is stored as [Dolma](https://github.com/allenai/dolma)-style JSONL inside of the `./localworkspace/results` directory.
```bash
cat localworkspace/results/output_*.jsonl
```
-You can view your documents side-by-side with the original PDF renders using the `dolmaviewer` command.
+View results side-by-side with the original PDFs (uses `dolmaviewer` command):
```bash
python -m olmocr.viewer.dolmaviewer localworkspace/results/output_*.jsonl
@@ -106,7 +101,7 @@ Now on any subsequent nodes, just run this and they will start grabbing items fr
python -m olmocr.pipeline s3://my_s3_bucket/pdfworkspaces/exampleworkspace
```
-If you are at AI2 and want to linearize millions of PDFs efficiently using [beaker](https://www.beaker.org), just add the `--beaker`
+If you are at Ai2 and want to linearize millions of PDFs efficiently using [beaker](https://www.beaker.org), just add the `--beaker`
flag. This will prepare the workspace on your local machine, and then launch N GPU workers in the cluster to start
converting PDFs.
diff --git a/olmocr/data/buildsilverdatasummary.py b/olmocr/data/buildsilverdatasummary.py
index 04633f4..40ed14c 100644
--- a/olmocr/data/buildsilverdatasummary.py
+++ b/olmocr/data/buildsilverdatasummary.py
@@ -6,13 +6,15 @@ import os
import random
import re
import sqlite3
+from collections import Counter
from concurrent.futures import ProcessPoolExecutor, as_completed
+from typing import Optional
from urllib.parse import urlparse
from tqdm import tqdm
-def parse_pdf_hash(pretty_pdf_path: str) -> str:
+def parse_pdf_hash(pretty_pdf_path: str) -> Optional[str]:
pattern = r"s3://ai2-s2-pdfs/([a-f0-9]{4})/([a-f0-9]+)\.pdf-\d+"
match = re.match(pattern, pretty_pdf_path)
if match:
@@ -58,7 +60,7 @@ def cache_athena_csv_to_db(athena_csv_path: str) -> str:
return db_path
-def get_uri_from_db(db_path: str, pdf_hash: str) -> str:
+def get_uri_from_db(db_path: str, pdf_hash: str) -> Optional[str]:
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
cursor.execute("SELECT uri FROM pdf_mapping WHERE pdf_hash = ?", (pdf_hash,))
@@ -154,7 +156,7 @@ def main():
for cid, uri, domain in all_rows:
writer.writerow([cid, uri if uri else "", domain if domain else ""])
- domain_counter = collections.Counter()
+ domain_counter: Counter[str] = Counter()
for _, _, domain in all_rows:
if domain:
domain_counter[domain] += 1
diff --git a/olmocr/data/renderpdf.py b/olmocr/data/renderpdf.py
index d3db16b..ecdad56 100644
--- a/olmocr/data/renderpdf.py
+++ b/olmocr/data/renderpdf.py
@@ -1,6 +1,7 @@
import base64
import io
import subprocess
+from typing import List
from PIL import Image
@@ -25,12 +26,11 @@ def get_pdf_media_box_width_height(local_pdf_path: str, page_num: int) -> tuple[
# Parse the output to find MediaBox
output = result.stdout
- media_box = None
for line in output.splitlines():
if "MediaBox" in line:
- media_box = line.split(":")[1].strip().split()
- media_box = [float(x) for x in media_box]
+ media_box_str: List[str] = line.split(":")[1].strip().split()
+ media_box: List[float] = [float(x) for x in media_box_str]
return abs(media_box[0] - media_box[2]), abs(media_box[3] - media_box[1])
raise ValueError("MediaBox not found in the PDF info.")
diff --git a/olmocr/data/runopenaibatch.py b/olmocr/data/runopenaibatch.py
index 735febc..7090a03 100644
--- a/olmocr/data/runopenaibatch.py
+++ b/olmocr/data/runopenaibatch.py
@@ -144,8 +144,8 @@ def get_estimated_space_usage(folder_path):
def get_next_work_item(folder_path):
- all_states = get_state(folder_path)
- all_states = [s for s in all_states.values() if s["state"] not in FINISHED_STATES]
+ all_states = list(get_state(folder_path).values())
+ all_states = [s for s in all_states if s["state"] not in FINISHED_STATES]
all_states.sort(key=lambda s: s["last_checked"])
return all_states[0] if len(all_states) > 0 else None
diff --git a/olmocr/eval/buildelo.py b/olmocr/eval/buildelo.py
index f3eea20..2b94cc7 100644
--- a/olmocr/eval/buildelo.py
+++ b/olmocr/eval/buildelo.py
@@ -27,11 +27,17 @@ class Comparison:
@property
def comparison_a_method(self):
- return re.search(r"page[0-9]+_(\w+)\.md$", self.comparison_a_path).group(1)
+ match = re.search(r"page[0-9]+_(\w+)\.md$", self.comparison_a_path)
+ if match:
+ return match.group(1)
+ raise ValueError(f"No match found in path: {self.comparison_a_path}")
@property
def comparison_b_method(self):
- return re.search(r"page[0-9]+_(\w+)\.md$", self.comparison_b_path).group(1)
+ match = re.search(r"page[0-9]+_(\w+)\.md$", self.comparison_b_path)
+ if match:
+ return match.group(1)
+ raise ValueError(f"No match found in path: {self.comparison_b_path}")
def process_single_pdf(pdf_path, all_mds, comparisons, segmenter_name="spacy"):
diff --git a/olmocr/eval/runeval.py b/olmocr/eval/runeval.py
index 994cf09..969e65a 100644
--- a/olmocr/eval/runeval.py
+++ b/olmocr/eval/runeval.py
@@ -230,8 +230,8 @@ def list_jsonl_files(path: str) -> list:
# Returns the average Levenshtein distance match between the data
def process_jsonl_file(jsonl_file, gold_data, comparer):
page_data = {}
- total_alignment_score = 0
- char_weighted_alignment_score = 0
+ total_alignment_score: float = 0.0
+ char_weighted_alignment_score: float = 0.0
total_pages = 0
total_chars = 0
total_errors = 0
diff --git a/olmocr/eval/scoreelo.py b/olmocr/eval/scoreelo.py
index 6d510e0..49393cb 100644
--- a/olmocr/eval/scoreelo.py
+++ b/olmocr/eval/scoreelo.py
@@ -1,9 +1,10 @@
import csv
import re
from collections import defaultdict
+from typing import Any, DefaultDict
from urllib.parse import parse_qs, urlencode, urlsplit, urlunsplit
-import requests
+import requests # type: ignore
def fetch_review_page_html(url):
@@ -108,7 +109,7 @@ def build_comparison_report(entries_dict, datastore):
comparisons[(A, B)] = [A_wins, B_wins],
where A < B lexicographically in that tuple.
"""
- comparisons = defaultdict(lambda: [0, 0])
+ comparisons: DefaultDict[Any, list[int]] = defaultdict(lambda: [0, 0])
for entry_id, vote in datastore.items():
if entry_id not in entries_dict:
diff --git a/olmocr/filter/filter.py b/olmocr/filter/filter.py
index 470c81b..15dbd54 100644
--- a/olmocr/filter/filter.py
+++ b/olmocr/filter/filter.py
@@ -2,6 +2,7 @@ import logging
import re
import subprocess
from collections import Counter
+from typing import Any, Dict, List
from lingua import Language, LanguageDetectorBuilder
from pypdf import PdfReader
@@ -142,7 +143,7 @@ if __name__ == "__main__":
# Load the list of S3 paths with a progress bar
with open("/home/ubuntu/s2pdf_paths_1M.txt", "r") as f:
- s3_work_paths = list(filter(None, (line.strip() for line in tqdm(f, desc="Loading paths"))))
+ s3_work_paths: List[str] = list(filter(None, (line.strip() for line in tqdm(f, desc="Loading paths"))))
# Initialize the PDF filter
filter = PdfFilter(
@@ -173,7 +174,7 @@ if __name__ == "__main__":
while pending_futures:
# Wait for the next future to complete
- done, _ = wait(
+ done, _ = wait( # type: ignore
pending_futures.keys(),
timeout=0.1,
return_when=FIRST_COMPLETED,
diff --git a/olmocr/metrics.py b/olmocr/metrics.py
index 29d6c68..6795fd2 100644
--- a/olmocr/metrics.py
+++ b/olmocr/metrics.py
@@ -1,7 +1,7 @@
import asyncio
import time
from collections import defaultdict, deque
-from typing import Dict
+from typing import Any, Deque, Dict, List, Set
class MetricsKeeper:
@@ -15,7 +15,7 @@ class MetricsKeeper:
self.window = window # Time window in seconds
self.start_time = time.time() # Timestamp when MetricsKeeper was created
self.total_metrics = defaultdict(int) # Cumulative metrics since start
- self.window_metrics = deque() # Deque to store (timestamp, metrics_dict)
+ self.window_metrics: Deque[Any] = deque() # Deque to store (timestamp, metrics_dict)
self.window_sum = defaultdict(int) # Sum of metrics within the window
def add_metrics(self, **kwargs):
@@ -108,16 +108,16 @@ class WorkerTracker:
"""
async with self.lock:
# Determine all unique states across all workers
- all_states = set()
+ all_states: Set[str] = set()
for states in self.worker_status.values():
all_states.update(states.keys())
- all_states = sorted(all_states)
+ sorted_states: List[str] = sorted(all_states)
- headers = ["Worker ID"] + all_states
+ headers = ["Worker ID"] + sorted_states # type: ignore
rows = []
for worker_id, states in sorted(self.worker_status.items()):
row = [str(worker_id)]
- for state in all_states:
+ for state in sorted_states:
count = states.get(state, 0)
row.append(str(count))
rows.append(row)
diff --git a/olmocr/pipeline.py b/olmocr/pipeline.py
index 77eb654..b64597e 100644
--- a/olmocr/pipeline.py
+++ b/olmocr/pipeline.py
@@ -115,7 +115,7 @@ async def build_page_query(local_pdf_path: str, page: int, target_longest_image_
process_pool, partial(get_anchor_text, pdf_engine="pdfreport", target_length=target_anchor_text_len), local_pdf_path, page
)
- image_base64, anchor_text = await asyncio.gather(image_base64, anchor_text)
+ image_base64, anchor_text = await asyncio.gather(image_base64, anchor_text) # type: ignore
if image_rotation != 0:
image_bytes = base64.b64decode(image_base64)
with Image.open(BytesIO(image_bytes)) as img:
@@ -659,7 +659,7 @@ async def metrics_reporter(work_queue):
def submit_beaker_job(args):
- from beaker import (
+ from beaker import ( # type: ignore
Beaker,
Constraints,
EnvVar,
diff --git a/olmocr/prompts/anchor.py b/olmocr/prompts/anchor.py
index e920986..278ea60 100644
--- a/olmocr/prompts/anchor.py
+++ b/olmocr/prompts/anchor.py
@@ -35,7 +35,7 @@ def get_anchor_text(
scores = {label: get_document_coherency(text) for label, text in options.items()}
- best_option_label = max(scores, key=scores.get)
+ best_option_label = max(scores, key=scores.get) # type: ignore
best_option = options[best_option_label]
print(f"topcoherency chosen: {best_option_label}")
@@ -194,7 +194,7 @@ def _merge_image_elements(images: List[ImageElement], tolerance: float = 0.5) ->
union(i, j)
# Group images by their root parent
- groups = {}
+ groups: dict[int, list[int]] = {}
for i in range(n):
root = find(i)
groups.setdefault(root, []).append(i)
@@ -268,21 +268,21 @@ def _linearize_pdf_report(report: PageReport, max_length: int = 4000) -> str:
# Process text elements
text_strings = []
- for element in report.text_elements:
- if len(element.text.strip()) == 0:
+ for element in report.text_elements: # type: ignore
+ if len(element.text.strip()) == 0: # type: ignore
continue
- element_text = _cleanup_element_text(element.text)
- text_str = f"[{element.x:.0f}x{element.y:.0f}]{element_text}\n"
+ element_text = _cleanup_element_text(element.text) # type: ignore
+ text_str = f"[{element.x:.0f}x{element.y:.0f}]{element_text}\n" # type: ignore
text_strings.append((element, text_str))
# Combine all elements with their positions for sorting
- all_elements = []
+ all_elements: list[tuple[str, ImageElement, str, tuple[float, float]]] = []
for elem, s in image_strings:
position = (elem.bbox.x0, elem.bbox.y0)
all_elements.append(("image", elem, s, position))
for elem, s in text_strings:
- position = (elem.x, elem.y)
+ position = (elem.x, elem.y) # type: ignore
all_elements.append(("text", elem, s, position))
# Calculate total length
@@ -311,7 +311,7 @@ def _linearize_pdf_report(report: PageReport, max_length: int = 4000) -> str:
max_x_text = max(text_elements, key=lambda e: e.x)
min_y_text = min(text_elements, key=lambda e: e.y)
max_y_text = max(text_elements, key=lambda e: e.y)
- edge_elements.update([min_x_text, max_x_text, min_y_text, max_y_text])
+ edge_elements.update([min_x_text, max_x_text, min_y_text, max_y_text]) # type: ignore
# Keep track of element IDs to prevent duplication
selected_element_ids = set()
diff --git a/olmocr/s3_utils.py b/olmocr/s3_utils.py
index 3c4e9bd..4bef7ae 100644
--- a/olmocr/s3_utils.py
+++ b/olmocr/s3_utils.py
@@ -12,7 +12,7 @@ from typing import List, Optional
from urllib.parse import urlparse
import boto3
-import requests
+import requests # type: ignore
import zstandard as zstd
from boto3.s3.transfer import TransferConfig
from botocore.config import Config
@@ -58,7 +58,7 @@ def expand_s3_glob(s3_client, s3_glob: str) -> dict[str, str]:
for page in paginator.paginate(Bucket=bucket, Prefix=prefix):
for obj in page.get("Contents", []):
key = obj["Key"]
- if glob.fnmatch.fnmatch(key, posixpath.join(prefix, pattern)):
+ if glob.fnmatch.fnmatch(key, posixpath.join(prefix, pattern)): # type: ignore
matched[f"s3://{bucket}/{key}"] = obj["ETag"].strip('"')
return matched
diff --git a/olmocr/train/core/cli.py b/olmocr/train/core/cli.py
index 0de1176..4be8366 100644
--- a/olmocr/train/core/cli.py
+++ b/olmocr/train/core/cli.py
@@ -33,7 +33,7 @@ from omegaconf import OmegaConf as om
from omegaconf.errors import OmegaConfBaseException
from rich.console import Console
from rich.syntax import Syntax
-from yaml import safe_load
+from yaml import safe_load # type: ignore
from .errors import DolmaRefineError
@@ -116,7 +116,7 @@ def _make_parser(parser: A, config: Type[DataClass], prefix: Optional[str] = Non
# here's where we check if T is a dataclass
if is_dataclass(typ_):
# recursively add subparsers
- _make_parser(parser, typ_, prefix=field_name)
+ _make_parser(parser, typ_, prefix=field_name) # type: ignore
continue
if typ_ is bool:
diff --git a/olmocr/train/dataloader.py b/olmocr/train/dataloader.py
index 3dde420..7304399 100644
--- a/olmocr/train/dataloader.py
+++ b/olmocr/train/dataloader.py
@@ -52,7 +52,7 @@ def list_dataset_files(s3_glob_path: str):
return glob.glob(s3_glob_path)
-def load_jsonl_into_ds(s3_glob_path: str, first_n_files: int = None) -> Dataset:
+def load_jsonl_into_ds(s3_glob_path: str, first_n_files: Optional[int] = None) -> Dataset:
"""
Loads JSONL files from the specified S3 path into a Hugging Face Dataset.
"""
diff --git a/olmocr/train/molmo/modeling_molmo.py b/olmocr/train/molmo/modeling_molmo.py
index 0002ddd..caf60dd 100644
--- a/olmocr/train/molmo/modeling_molmo.py
+++ b/olmocr/train/molmo/modeling_molmo.py
@@ -576,24 +576,26 @@ class Dropout(nn.Dropout):
@dataclass
class VisionBackboneConfig:
- image_default_input_size: Tuple[int, int] = (336, 336)
- image_patch_size: int = 14
- image_pos_patch_size: int = 14
- image_emb_dim: int = 1024
- image_num_heads: int = 16
- image_num_key_value_heads: int = 16
- image_num_layers: int = 24
- image_head_dim: int = 64
- image_mlp_dim: int = 4096
- image_mlp_activations: str = "gelu"
- image_dropout_rate: float = 0.0
- image_num_pos: int = 577
- image_norm_eps: float = 1e-5
- attention_dropout: float = 0.0
- residual_dropout: float = 0.0
- initializer_range: float = 0.02
- fsdp_wrap: bool = False
- resize_mode: str = "default"
+ def __init__(self):
+ super().__init__()
+ self.image_default_input_size: Tuple[int, int] = (336, 336)
+ self.image_patch_size: int = 14
+ self.image_pos_patch_size: int = 14
+ self.image_emb_dim: int = 1024
+ self.image_num_heads: int = 16
+ self.image_num_key_value_heads: int = 16
+ self.image_num_layers: int = 24
+ self.image_head_dim: int = 64
+ self.image_mlp_dim: int = 4096
+ self.image_mlp_activations: str = "gelu"
+ self.image_dropout_rate: float = 0.0
+ self.image_num_pos: int = 577
+ self.image_norm_eps: float = 1e-5
+ self.attention_dropout: float = 0.0
+ self.residual_dropout: float = 0.0
+ self.initializer_range: float = 0.02
+ self.fsdp_wrap: bool = False
+ self.resize_mode: str = "default"
def __post_init__(self):
self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
@@ -606,59 +608,61 @@ class VisionBackboneConfig:
@dataclass
class FullMolmoConfig:
- d_model: int = 768
- n_heads: int = 12
- n_kv_heads: Optional[int] = None
- qkv_bias: bool = False
- clip_qkv: Optional[float] = None
- n_layers: int = 12
- mlp_ratio: int = 4
- mlp_hidden_size: Optional[int] = None
- activation_type: str = "swiglu"
- block_group_size: int = 1
- rope: bool = True
- rope_full_precision: bool = True
- rope_theta: float = 10000.0
- rope_impl: str = "interleave"
- vision_backbone: Optional[VisionBackboneConfig] = None
- attention_type: str = "sdpa"
- float32_attention: bool = True
- attention_dropout: float = 0.1
- response_attention_dropout: float = 0.0
- multi_query_attention: Optional[bool] = None
- attention_layer_norm: bool = False
- residual_dropout: float = 0.1
- embedding_dropout: float = 0.1
- layer_norm_type: str = "default"
- layer_norm_with_affine: bool = True
- layer_norm_eps: Optional[float] = None
- attention_layer_norm_with_affine: bool = True
- max_sequence_length: int = 1024
- max_position_embeddings: Optional[int] = None
- include_bias: bool = True
- bias_for_layer_norm: Optional[bool] = None
- scale_logits: bool = False
- vocab_size: int = 50257
- embedding_size: Optional[int] = 50304
- additional_vocab_size: Optional[int] = None
- new_embedding_init_range: float = 0.02
- weight_tying: bool = True
- pad_token_id: int = -1
- init_device: Optional[str] = None
- init_std: float = 0.02
- init_cutoff_factor: Optional[float] = None
- norm_after: bool = False
- precision: Optional[str] = None
- image_padding_embed: Optional[str] = None
- vit_layers: Tuple = (-1,)
- image_pooling_h: int = 2
- image_pooling_w: int = 2
- image_pooling_2d: str = "attention"
- image_projector: str = "mlp"
- image_feature_dropout: float = 0.0
- initializer_range: float = 0.02
- normalize_input_embeds: bool = False
- use_position_ids: bool = True
+ def __init__(self):
+ super().__init__()
+ self.d_model: int = 768
+ self.n_heads: int = 12
+ self.n_kv_heads: Optional[int] = None
+ self.qkv_bias: bool = False
+ self.clip_qkv: Optional[float] = None
+ self.n_layers: int = 12
+ self.mlp_ratio: int = 4
+ self.mlp_hidden_size: Optional[int] = None
+ self.activation_type: str = "swiglu"
+ self.block_group_size: int = 1
+ self.rope: bool = True
+ self.rope_full_precision: bool = True
+ self.rope_theta: float = 10000.0
+ self.rope_impl: str = "interleave"
+ self.vision_backbone: Optional[VisionBackboneConfig] = None
+ self.attention_type: str = "sdpa"
+ self.float32_attention: bool = True
+ self.attention_dropout: float = 0.1
+ self.response_attention_dropout: float = 0.0
+ self.multi_query_attention: Optional[bool] = None
+ self.attention_layer_norm: bool = False
+ self.residual_dropout: float = 0.1
+ self.embedding_dropout: float = 0.1
+ self.layer_norm_type: str = "default"
+ self.layer_norm_with_affine: bool = True
+ self.layer_norm_eps: Optional[float] = None
+ self.attention_layer_norm_with_affine: bool = True
+ self.max_sequence_length: int = 1024
+ self.max_position_embeddings: Optional[int] = None
+ self.include_bias: bool = True
+ self.bias_for_layer_norm: Optional[bool] = None
+ self.scale_logits: bool = False
+ self.vocab_size: int = 50257
+ self.embedding_size: Optional[int] = 50304
+ self.additional_vocab_size: Optional[int] = None
+ self.new_embedding_init_range: float = 0.02
+ self.weight_tying: bool = True
+ self.pad_token_id: int = -1
+ self.init_device: Optional[str] = None
+ self.init_std: float = 0.02
+ self.init_cutoff_factor: Optional[float] = None
+ self.norm_after: bool = False
+ self.precision: Optional[str] = None
+ self.image_padding_embed: Optional[str] = None
+ self.vit_layers: Tuple = (-1,)
+ self.image_pooling_h: int = 2
+ self.image_pooling_w: int = 2
+ self.image_pooling_2d: str = "attention"
+ self.image_projector: str = "mlp"
+ self.image_feature_dropout: float = 0.0
+ self.initializer_range: float = 0.02
+ self.normalize_input_embeds: bool = False
+ self.use_position_ids: bool = True
@property
def effective_n_kv_heads(self) -> int:
@@ -687,7 +691,7 @@ class FullMolmoConfig:
@property
def image_patch_size(self):
assert self.vision_backbone is not None
- return self.visoin_backbone.image_patch_size
+ return self.vision_backbone.image_patch_size
def llm_patches_per_crop(self):
h, w = self.image_num_patch
@@ -705,7 +709,7 @@ class ViTMLP(nn.Module):
def __init__(self, config: FullMolmoConfig):
super().__init__()
self.config = config
- v_cfg = config.vision_backbone
+ v_cfg = config.vision_backbone or VisionBackboneConfig()
self.w1 = nn.Linear(
v_cfg.image_emb_dim,
@@ -725,7 +729,7 @@ class ViTMLP(nn.Module):
)
def reset_parameters(self):
- v_cfg = self.config.vision_backbone
+ v_cfg = self.config.vision_backbone or VisionBackboneConfig()
nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0)
nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0)
nn.init.zeros_(self.w1.bias)
@@ -744,7 +748,7 @@ class ResidualAttentionBlock(nn.Module):
super().__init__()
self.config = config
- v_cfg = config.vision_backbone
+ v_cfg = config.vision_backbone or VisionBackboneConfig()
self.attention = MultiHeadDotProductAttention(config)
self.feed_forward = ViTMLP(config)
self.attention_norm = nn.LayerNorm(
@@ -777,7 +781,7 @@ class BlockCollection(nn.Module):
self.config = config
self.grad_checkpointing: bool = False
- v_cfg = config.vision_backbone
+ v_cfg = config.vision_backbone or VisionBackboneConfig()
self.resblocks = nn.ModuleList([ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers)])
def reset_parameters(self):
@@ -805,7 +809,7 @@ class VisionTransformer(nn.Module):
super().__init__()
self.config = config
- v_cfg = config.vision_backbone
+ v_cfg = config.vision_backbone or VisionBackboneConfig()
# class embeddings and positional embeddings
self.scale = v_cfg.image_emb_dim**-0.5
self.class_embedding = nn.Parameter(
@@ -848,15 +852,15 @@ class VisionTransformer(nn.Module):
pos_emb = pos_emb.reshape((int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]))
- (patch_num_0, patch_num_1) = patch_num
+ (patch_num_0, patch_num_1) = patch_num # type: ignore
- if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
+ if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1: # type: ignore
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
# antialias: default True in jax.image.resize
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
pos_emb = F.interpolate(
pos_emb,
- size=(patch_num_0, patch_num_1),
+ size=(patch_num_0, patch_num_1), # type: ignore
mode="bicubic",
align_corners=False,
antialias=True,
@@ -867,12 +871,12 @@ class VisionTransformer(nn.Module):
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
return x
- def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
+ def forward(self, x: torch.Tensor, patch_num: Optional[int] = None) -> List[torch.Tensor]:
"""
: param x: (batch_size, num_patch, n_pixels)
"""
if patch_num is None:
- patch_num = self.config.vision_backbone.image_num_patch
+ patch_num = self.config.vision_backbone.image_num_patch # type: ignore
B, N, D = x.shape
x = self.patch_embedding(x)
@@ -893,7 +897,7 @@ class MultiHeadDotProductAttention(nn.Module):
self.config = config
self.use_bias = use_bias
- v_cfg = config.vision_backbone
+ v_cfg = config.vision_backbone or VisionBackboneConfig()
self.embed_dim = v_cfg.image_emb_dim
self.num_heads = v_cfg.image_num_heads
self.head_dim = v_cfg.image_head_dim
@@ -985,12 +989,12 @@ class MultiHeadDotProductAttention(nn.Module):
elif self.config.attention_type == "sdpa":
if self.config.float32_attention and not torch.is_autocast_enabled():
xv = xv.to(torch.float32)
- attn_output = F.scaled_dot_product_attention(
+ attn_output = F.scaled_dot_product_attention( # type: ignore
xq.transpose(1, 2).contiguous(),
xk.transpose(1, 2).contiguous(),
xv.transpose(1, 2).contiguous(),
is_causal=False,
- dropout_p=self.config.vision_backbone.attention_dropout,
+ dropout_p=self.config.vision_backbone.attention_dropout, # type: ignore
).transpose(1, 2)
else:
raise NotImplementedError(self.config.attention_type)
@@ -1023,7 +1027,7 @@ class MultiHeadAttentionPool(nn.Module):
self.mean_residual = mean_residual
self.query = query
- v_cfg = config.vision_backbone
+ v_cfg = config.vision_backbone or VisionBackboneConfig()
input_dim = v_cfg.image_emb_dim
self.embed_dim = v_cfg.image_emb_dim * factor
self.num_heads = v_cfg.image_num_heads
@@ -1202,18 +1206,17 @@ class OLMoVisionBackbone(nn.Module):
super().__init__()
self.config = config
self.image_vit = VisionTransformer(config)
-
- input_dim: int = None
+ input_dim: Optional[int] = None
self.image_pooling_2d: nn.Module = None
if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}:
self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
- input_dim = config.vision_backbone.image_emb_dim
+ input_dim = config.vision_backbone.image_emb_dim # type: ignore
elif config.image_pooling_2d == ImagePooling2DType.attention_2wide:
cfg = deepcopy(config)
- cfg.vision_backbone.image_emb_dim *= 2
- cfg.vision_backbone.image_head_dim *= 2
+ cfg.vision_backbone.image_emb_dim *= 2 # type: ignore
+ cfg.vision_backbone.image_head_dim *= 2 # type: ignore
self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False)
- input_dim = cfg.vision_backbone.image_emb_dim
+ input_dim = cfg.vision_backbone.image_emb_dim # type: ignore
elif config.image_pooling_2d == ImagePooling2DType.attention_v2:
assert config.vit_layers is not None
use_bias = True
@@ -1232,11 +1235,11 @@ class OLMoVisionBackbone(nn.Module):
query=query,
is_vit_layer=False,
)
- input_dim = config.vision_backbone.image_emb_dim * factor
+ input_dim = config.vision_backbone.image_emb_dim * factor # type: ignore
elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]:
self.image_pooling_2d = None
nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
- input_dim = nlayers * config.vision_backbone.image_emb_dim
+ input_dim = nlayers * config.vision_backbone.image_emb_dim # type: ignore
else:
raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}")
@@ -1244,9 +1247,9 @@ class OLMoVisionBackbone(nn.Module):
# `MLP` assume the activation takes two inputs, so it must be a 'llama' version
if config.activation_type == ActivationType.swiglu:
- mlp_config = replace(config, activation_type=ActivationType.llama_swiglu)
+ mlp_config = replace(config, activation_type=ActivationType.llama_swiglu) # type: ignore
elif config.activation_type == ActivationType.gelu:
- mlp_config = replace(config, activation_type=ActivationType.llama_geglu)
+ mlp_config = replace(config, activation_type=ActivationType.llama_geglu) # type: ignore
else:
mlp_config = config
if config.image_projector == ImageProjectType.mlpx2:
@@ -1291,7 +1294,7 @@ class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
self.pad_embed = None
if config.image_padding_embed:
- image_dim = v_cfg.image_emb_dim * len(self.config.vit_layers)
+ image_dim = v_cfg.image_emb_dim * len(self.config.vit_layers) # type: ignore
if config.image_padding_embed in ["pad_embed", "regress"]:
self.pad_embed = nn.Parameter(torch.zeros((image_dim,), device=config.init_device))
elif config.image_padding_embed == "pad_and_partial_pad":
@@ -1349,13 +1352,13 @@ class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
assert image_masks is not None
if cfg.image_padding_embed == "pad_embed":
all_pad = (image_masks == 0).to(dtype=torch.float32)
- pad_embed = self.pad_embed[None, None, None, :]
+ pad_embed = self.pad_embed[None, None, None, :] # type: ignore
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
elif cfg.image_padding_embed == "regress":
- pad_embed = self.pad_embed[None, None, None, :]
+ pad_embed = self.pad_embed[None, None, None, :] # type: ignore
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1)
elif cfg.image_padding_embed == "pad_and_partial_pad":
- pad_embed = self.pad_embed[:, None, None, None, :]
+ pad_embed = self.pad_embed[:, None, None, None, :] # type: ignore
all_pad = image_masks == 0
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=image_features.dtype)
all_pad = all_pad.to(dtype=image_features.dtype)
@@ -1557,12 +1560,12 @@ class LayerNormBase(nn.Module):
self.eps = self.config.layer_norm_eps or eps
self.normalized_shape = (size or config.d_model,)
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
- self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device))
+ self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device)) # type: ignore
use_bias = self.config.bias_for_layer_norm
if use_bias is None:
use_bias = self.config.include_bias
if use_bias:
- self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device))
+ self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device)) # type: ignore
else:
self.register_parameter("bias", None)
else:
@@ -1593,7 +1596,7 @@ class RMSLayerNorm(LayerNormBase):
elementwise_affine: Optional[bool] = None,
eps: float = 1e-5,
):
- super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
+ super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) # type: ignore
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.autocast(enabled=False, device_type=x.device.type):
@@ -1625,7 +1628,7 @@ class LayerNorm(LayerNormBase):
elementwise_affine: Optional[bool] = None,
eps: float = 1e-05,
):
- super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
+ super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) # type: ignore
self.low_precision = low_precision
def forward(self, x: torch.Tensor) -> torch.Tensor:
@@ -1663,7 +1666,7 @@ class Molmo(nn.Module):
if self.config.additional_vocab_size is not None:
wte = Embedding(
config.embedding_size or config.vocab_size,
- config.additional_vocab_size,
+ config.additional_vocab_size, # type: ignore
config.d_model,
device=config.init_device,
initializer_range=config.initializer_range,
@@ -1680,7 +1683,7 @@ class Molmo(nn.Module):
)
)
- blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
+ blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)] # type: ignore
if self.config.block_group_size > 1:
raise NotImplementedError()
else:
@@ -1804,14 +1807,14 @@ class Molmo(nn.Module):
if self.config.use_position_ids and attention_mask is None:
attention_mask = input_ids != -1
- if subsegment_ids is not None:
+ if subsegment_ids is not None and attention_mask is not None:
assert not use_cache, "Subsegment_ids cannot be used with cache."
subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1)
attention_mask = subsegment_mask.to(attention_mask.dtype) * attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)
if position_ids is None:
raise ValueError("Positioned ids must be given if using subsegment_ids")
else:
- if self.config.use_position_ids and position_ids is None:
+ if self.config.use_position_ids and position_ids is None and attention_mask is not None:
position_ids = torch.clamp(
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
min=0,
@@ -1824,10 +1827,10 @@ class Molmo(nn.Module):
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
num_image: Optional[int] = None
- if images is not None:
+ if images is not None and image_input_idx is not None:
# shape: (batch_size, num_image, num_patch, d_model)
# cls_embed: (batch_size, num_image, d_model)
- image_features, cls_embed = self.vision_backbone(images, image_masks)
+ image_features, cls_embed = self.vision_backbone(images, image_masks) # type: ignore
num_image, num_patch = image_features.shape[1:3]
assert image_input_idx.shape == (batch_size, num_image, num_patch)
@@ -2008,8 +2011,8 @@ class MolmoForCausalLM(PreTrainedModel):
rope_theta=config.rope_theta,
layer_norm_eps=config.layer_norm_eps,
layer_norm_type=config.layer_norm_type,
- vit_layers=[-2, -9],
- vision_backbone=VisionBackboneConfig(
+ vit_layers=[-2, -9], # type: ignore
+ vision_backbone=VisionBackboneConfig( # type: ignore
image_default_input_size=(336, 336),
image_patch_size=14,
image_pos_patch_size=14,
@@ -2053,7 +2056,7 @@ class MolmoForCausalLM(PreTrainedModel):
output_hidden_states: Optional[bool] = None,
append_last_valid_logits: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
- cache_position: Optional[
+ cache_position: Optional[ # type: ignore
Cache
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
) -> Union[Tuple, CausalLMOutputWithPast]:
@@ -2079,7 +2082,7 @@ class MolmoForCausalLM(PreTrainedModel):
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
- last_logits_only=last_logits_only,
+ last_logits_only=last_logits_only, # type: ignore
output_hidden_states=output_hidden_states,
append_last_valid_logits=append_last_valid_logits,
)
@@ -2153,7 +2156,7 @@ class MolmoForCausalLM(PreTrainedModel):
input_ids = batch["input_ids"]
batch_size, seq_len = input_ids.shape
attention_mask = batch.get("attention_mask", None)
- max_new_tokens = generation_config.max_new_tokens
+ max_new_tokens = generation_config.max_new_tokens # type: ignore
assert max_new_tokens is not None
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len
position_ids: Optional[torch.Tensor] = None
diff --git a/olmocr/work_queue.py b/olmocr/work_queue.py
index 353f66a..8d6be16 100644
--- a/olmocr/work_queue.py
+++ b/olmocr/work_queue.py
@@ -5,8 +5,9 @@ import hashlib
import logging
import os
import random
+from asyncio import Queue
from dataclasses import dataclass
-from typing import List, Optional
+from typing import Any, List, Optional
from olmocr.s3_utils import (
download_zstd_csv,
@@ -196,7 +197,7 @@ class LocalWorkQueue(WorkQueue):
os.makedirs(self._locks_dir, exist_ok=True)
# Internal queue
- self._queue = asyncio.Queue()
+ self._queue: Queue[Any] = Queue()
async def populate_queue(self, work_paths: List[str], items_per_group: int) -> None:
"""
@@ -401,7 +402,7 @@ class S3WorkQueue(WorkQueue):
self._index_path = os.path.join(self.workspace_path, "work_index_list.csv.zstd")
self._output_glob = os.path.join(self.workspace_path, "results", "*.jsonl")
- self._queue = asyncio.Queue()
+ self._queue: Queue[Any] = Queue()
async def populate_queue(self, work_paths: List[str], items_per_group: int) -> None:
"""
diff --git a/tests/test_sglang.py b/tests/test_sglang.py
index 1668b22..806ec41 100644
--- a/tests/test_sglang.py
+++ b/tests/test_sglang.py
@@ -35,6 +35,7 @@ MODEL_FINETUNED_PATH = (
"s3://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/"
)
+
@unittest.skip("Skip these tests when running CI, they are mostly for experimentation")
class TestSglangServer(unittest.IsolatedAsyncioTestCase):
async def asyncSetUp(self):