Reworking to be async

This commit is contained in:
Jake Poznanski 2024-11-08 08:14:20 -08:00
parent a103ce730f
commit a39350e074

View File

@ -9,6 +9,7 @@ import subprocess
import atexit
import hashlib
import base64
import asyncio
from tqdm import tqdm
from io import BytesIO
@ -73,8 +74,123 @@ def compute_workgroup_sha1(work_group: list[str]) -> str:
sha1.update(pdf.encode('utf-8'))
return sha1.hexdigest()
async def start_sglang_server(args):
model_cache_dir = os.path.join(os.path.expanduser('~'), '.cache', 'pdelfin', 'model')
download_directory(args.model, model_cache_dir)
if __name__ == '__main__':
# Start up the sglang server
sglang_process = subprocess.Popen([
"python3", "-m", "sglang.launch_server",
"--model-path", model_cache_dir,
"--chat-template", args.model_chat_template,
"--context-length", str(args.model_max_context),
])
async def populate_pdf_work_queue(args):
index_file_s3_path = os.path.join(args.workspace, "pdf_index_list.csv.zstd")
if args.pdfs.startswith("s3://"):
logger.info(f"Expanding s3 glob at {args.pdfs}")
all_pdfs = expand_s3_glob(pdf_s3, args.pdfs)
elif os.path.exists(args.pdfs):
logger.info(f"Loading file at {args.pdfs}")
with open(args.pdfs, "r") as f:
all_pdfs = list(filter(None, (line.strip() for line in tqdm(f, desc="Processing PDFs"))))
else:
raise ValueError("pdfs argument needs to be either an s3 glob search path, or a local file contains pdf paths (one per line)")
all_pdfs = set(all_pdfs)
logger.info(f"Found {len(all_pdfs):,} total pdf paths")
existing_lines = download_zstd_csv(workspace_s3, index_file_s3_path)
# Parse existing work items into groups
existing_groups = {}
for line in existing_lines:
if line.strip():
parts = line.strip().split(",")
group_hash = parts[0]
group_pdfs = parts[1:]
existing_groups[group_hash] = group_pdfs
existing_pdf_set = set(pdf for group_pdfs in existing_groups.values() for pdf in group_pdfs)
logger.info(f"Loaded {len(existing_pdf_set):,} existing pdf paths from the workspace")
# Remove existing PDFs from all_pdfs
new_pdfs = all_pdfs - existing_pdf_set
logger.info(f"{len(new_pdfs):,} new pdf paths to add to the workspace")
# Group the new PDFs into chunks of group_size
# TODO: Figure out the group size automatically by sampling a few pdfs, and taking the mean/median number of pages, etc.
new_groups = []
current_group = []
for pdf in sorted(new_pdfs): # Sort for consistency
current_group.append(pdf)
if len(current_group) == args.group_size:
group_hash = compute_workgroup_sha1(current_group)
new_groups.append((group_hash, current_group))
current_group = []
if current_group:
group_hash = compute_workgroup_sha1(current_group)
new_groups.append((group_hash, current_group))
logger.info(f"Created {len(new_groups):,} new work groups")
# Combine existing groups with new groups
combined_groups = existing_groups.copy()
for group_hash, group_pdfs in new_groups:
combined_groups[group_hash] = group_pdfs
# Prepare lines to write back
combined_lines = [",".join([group_hash] + group_pdfs) for group_hash, group_pdfs in combined_groups.items()]
# Upload the combined work items back to S3
if new_groups:
upload_zstd_csv(workspace_s3, index_file_s3_path, combined_lines)
logger.info("Completed adding new PDFs.")
async def load_pdf_work_queue(args) -> asyncio.Queue:
index_file_s3_path = os.path.join(args.workspace, "pdf_index_list.csv.zstd")
# Read in the work queue from s3
work_queue_lines = download_zstd_csv(workspace_s3, index_file_s3_path)
work_queue = {}
for line in work_queue_lines:
if line.strip():
parts = line.strip().split(",")
group_hash = parts[0]
group_pdfs = parts[1:]
work_queue[group_hash] = group_pdfs
# Read in the done items from the s3 workspace
done_work_items = expand_s3_glob(workspace_s3, f"{args.workspace}/dolma_documents/output_*.jsonl")
done_work_hashes = set()
for item in done_work_items:
filename = os.path.basename(item)
if filename.startswith('output_') and filename.endswith('.jsonl'):
group_hash = filename[len('output_'):-len('.jsonl')]
done_work_hashes.add(group_hash)
remaining_work_hashes = set(work_queue.keys()) - done_work_hashes
remaining_work_queue = {hash: work_queue[hash] for hash in remaining_work_hashes}
queue = asyncio.Queue()
for work in remaining_work_queue:
await queue.put((work, remaining_work_queue[work]))
return queue
async def worker(args, queue):
while True:
work = await queue.get()
logger.info(f"Got work to do for {work}")
queue.task_done()
async def main():
parser = argparse.ArgumentParser(description='Manager for running millions of PDFs through a batch inference pipeline')
parser.add_argument('workspace', help='The S3 path where work will be done e.g., s3://bucket/prefix/')
parser.add_argument('--pdfs', help='Path to add pdfs stored in s3 to the workspace, can be a glob path s3://bucket/prefix/*.pdf or path to file containing list of pdf paths', default=None)
@ -101,131 +217,67 @@ if __name__ == '__main__':
pdf_session = boto3.Session(profile_name=args.pdf_profile)
pdf_s3 = pdf_session.client("s3")
index_file_s3_path = os.path.join(args.workspace, "pdf_index_list.csv.zstd")
check_poppler_version()
# Check list of pdfs and that it matches what's in the workspace
if args.pdfs:
if args.pdfs.startswith("s3://"):
logger.info(f"Expanding s3 glob at {args.pdfs}")
all_pdfs = expand_s3_glob(pdf_s3, args.pdfs)
elif os.path.exists(args.pdfs):
logger.info(f"Loading file at {args.pdfs}")
with open(args.pdfs, "r") as f:
all_pdfs = list(filter(None, (line.strip() for line in tqdm(f, desc="Processing PDFs"))))
else:
raise ValueError("pdfs argument needs to be either an s3 glob search path, or a local file contains pdf paths (one per line)")
await populate_pdf_work_queue(args)
all_pdfs = set(all_pdfs)
logger.info(f"Found {len(all_pdfs):,} total pdf paths")
work_queue = await load_pdf_work_queue(args)
logger.info(f"Work queue prepared with {work_queue.qsize()} items")
existing_lines = download_zstd_csv(workspace_s3, index_file_s3_path)
# Parse existing work items into groups
existing_groups = {}
for line in existing_lines:
if line.strip():
parts = line.strip().split(",")
group_hash = parts[0]
group_pdfs = parts[1:]
existing_groups[group_hash] = group_pdfs
existing_pdf_set = set(pdf for group_pdfs in existing_groups.values() for pdf in group_pdfs)
# Create worker tasks to process the queue concurrently.
tasks = []
for i in range(args.workers):
task = asyncio.create_task(worker(args, work_queue))
tasks.append(task)
logger.info(f"Loaded {len(existing_pdf_set):,} existing pdf paths from the workspace")
# Wait for the queue to be fully processed
await work_queue.join()
# Remove existing PDFs from all_pdfs
new_pdfs = all_pdfs - existing_pdf_set
logger.info(f"{len(new_pdfs):,} new pdf paths to add to the workspace")
# Cancel our worker tasks.
for task in tasks:
task.cancel()
# Group the new PDFs into chunks of group_size
# TODO: Figure out the group size automatically by sampling a few pdfs, and taking the mean/median number of pages, etc.
new_groups = []
current_group = []
for pdf in sorted(new_pdfs): # Sort for consistency
current_group.append(pdf)
if len(current_group) == args.group_size:
group_hash = compute_workgroup_sha1(current_group)
new_groups.append((group_hash, current_group))
current_group = []
if current_group:
group_hash = compute_workgroup_sha1(current_group)
new_groups.append((group_hash, current_group))
# Wait until all worker tasks are cancelled.
await asyncio.gather(*tasks, return_exceptions=True)
logger.info(f"Created {len(new_groups):,} new work groups")
if __name__ == "__main__":
asyncio.run(main())
# Combine existing groups with new groups
combined_groups = existing_groups.copy()
for group_hash, group_pdfs in new_groups:
combined_groups[group_hash] = group_pdfs
# Prepare lines to write back
combined_lines = [",".join([group_hash] + group_pdfs) for group_hash, group_pdfs in combined_groups.items()]
# Upload the combined work items back to S3
if new_groups:
upload_zstd_csv(workspace_s3, index_file_s3_path, combined_lines)
logger.info("Completed adding new PDFs.")
# TODO
# If there is a beaker flag, then your job is to trigger this script with N replicas on beaker
# If not, then your job is to do the actual work
# Download the model from the best place available
model_cache_dir = os.path.join(os.path.expanduser('~'), '.cache', 'pdelfin', 'model')
download_directory(args.model, model_cache_dir)
# Start up the sglang server
sglang_process = subprocess.Popen([
"python3", "-m", "sglang.launch_server",
"--model-path", model_cache_dir,
"--chat-template", args.model_chat_template,
"--context-length", str(args.model_max_context),
])
# Register atexit function and signal handlers to guarantee process termination
def terminate_processes():
print("Terminating child processes...")
sglang_process.terminate()
try:
sglang_process.wait(timeout=30)
except subprocess.TimeoutExpired:
print("Forcing termination of child processes.")
sglang_process.kill()
print("Child processes terminated.")
# def terminate_processes():
# print("Terminating child processes...")
# sglang_process.terminate()
# try:
# sglang_process.wait(timeout=30)
# except subprocess.TimeoutExpired:
# print("Forcing termination of child processes.")
# sglang_process.kill()
# print("Child processes terminated.")
atexit.register(terminate_processes)
# atexit.register(terminate_processes)
def signal_handler(sig, frame):
terminate_processes()
sys.exit(0)
# def signal_handler(sig, frame):
# terminate_processes()
# sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
# signal.signal(signal.SIGINT, signal_handler)
# signal.signal(signal.SIGTERM, signal_handler)
# Read in the work queue from s3
work_queue_lines = download_zstd_csv(workspace_s3, index_file_s3_path)
work_queue = {}
for line in work_queue_lines:
if line.strip():
parts = line.strip().split(",")
group_hash = parts[0]
group_pdfs = parts[1:]
work_queue[group_hash] = group_pdfs
# Read in the done items from the s3 workspace
done_work_items = expand_s3_glob(workspace_s3, f"{args.workspace}/dolma_documents/output_*.jsonl")
done_work_hashes = set()
for item in done_work_items:
filename = os.path.basename(item)
if filename.startswith('output_') and filename.endswith('.jsonl'):
group_hash = filename[len('output_'):-len('.jsonl')]
done_work_hashes.add(group_hash)
remaining_work_hashes = set(work_queue.keys()) - done_work_hashes
remaining_work_queue = {hash: work_queue[hash] for hash in remaining_work_hashes}
logger.info(f"Remaining work items: {len(remaining_work_queue)}")
# logger.info(f"Remaining work items: {len(remaining_work_queue)}")
# TODO
# Spawn up to N workers to do:
@ -238,12 +290,12 @@ if __name__ == '__main__':
# Possible future addon, in beaker, discover other nodes on this same job
# Send them a message when you take a work item off the queue
try:
while True:
time.sleep(1)
# try:
# while True:
# time.sleep(1)
if sglang_process.returncode is not None:
logger.error(f"Sglang server exited with code {sglang_process.returncode} exiting.")
except KeyboardInterrupt:
logger.info("Got keyboard interrupt, exiting everything")
sys.exit(1)
# if sglang_process.returncode is not None:
# logger.error(f"Sglang server exited with code {sglang_process.returncode} exiting.")
# except KeyboardInterrupt:
# logger.info("Got keyboard interrupt, exiting everything")
# sys.exit(1)