mirror of
https://github.com/allenai/olmocr.git
synced 2025-09-25 08:20:17 +00:00
More cleanup
This commit is contained in:
parent
53fdb6108c
commit
a45f86e4a4
@ -8,6 +8,7 @@ import glob
|
||||
import tempfile
|
||||
import posixpath
|
||||
|
||||
from dataclasses import dataclass
|
||||
from pypdf import PdfReader
|
||||
from tqdm import tqdm
|
||||
from typing import Optional
|
||||
@ -30,15 +31,17 @@ class DatabaseManager:
|
||||
|
||||
def _initialize_tables(self):
|
||||
self.cursor.execute("""
|
||||
CREATE TABLE IF NOT EXISTS index_table (
|
||||
custom_id TEXT,
|
||||
CREATE TABLE IF NOT EXISTS page_results (
|
||||
s3_path TEXT,
|
||||
page_num INTEGER,
|
||||
start_index BIGINT,
|
||||
end_index BIGINT
|
||||
length BIGINT,
|
||||
finish_reason STRING
|
||||
error STRING
|
||||
)
|
||||
""")
|
||||
self.cursor.execute("""
|
||||
CREATE INDEX IF NOT EXISTS idx_custom_id ON index_table(custom_id)
|
||||
CREATE INDEX IF NOT EXISTS idx_path ON index_table(s3_path)
|
||||
""")
|
||||
self.cursor.execute("""
|
||||
CREATE TABLE IF NOT EXISTS pdfs (
|
||||
@ -60,15 +63,16 @@ class DatabaseManager:
|
||||
value TEXT
|
||||
)
|
||||
""")
|
||||
self.cursor.execute("SELECT value FROM metadata WHERE key='round'")
|
||||
if self.cursor.fetchone() is None:
|
||||
self.cursor.execute("INSERT INTO metadata (key, value) VALUES ('round', '0')")
|
||||
|
||||
self.conn.commit()
|
||||
|
||||
def get_current_round(self):
|
||||
self.cursor.execute("SELECT value FROM metadata WHERE key='round'")
|
||||
def get_metadata(self, key: str) -> str:
|
||||
self.cursor.execute("SELECT value FROM metadata WHERE key=?", (key,))
|
||||
result = self.cursor.fetchone()
|
||||
return int(result[0])
|
||||
return result[0]
|
||||
|
||||
def get_current_round(self):
|
||||
return int(self.get_metadata("round"))
|
||||
|
||||
def is_file_processed(self, s3_path, etag):
|
||||
self.cursor.execute("SELECT etag FROM processed_files WHERE s3_path = ?", (s3_path,))
|
||||
@ -76,6 +80,7 @@ class DatabaseManager:
|
||||
return result is not None and result[0] == etag
|
||||
|
||||
def add_index_entries(self, index_entries):
|
||||
# TODO MAke it take batchInferenceLines
|
||||
if index_entries:
|
||||
self.cursor.executemany("""
|
||||
INSERT INTO index_table (custom_id, s3_path, start_index, end_index)
|
||||
@ -113,45 +118,6 @@ class DatabaseManager:
|
||||
def close(self):
|
||||
self.conn.close()
|
||||
|
||||
def build_index(s3_path):
|
||||
db_manager = DatabaseManager(s3_path)
|
||||
|
||||
bucket, prefix = parse_s3_path(s3_path)
|
||||
|
||||
# List all .json and .jsonl files under s3_path with their ETags
|
||||
files = expand_s3_glob(s3_path)
|
||||
|
||||
if not files:
|
||||
print("No .json or .jsonl files found in the specified S3 path.")
|
||||
db_manager.close()
|
||||
return
|
||||
|
||||
# Prepare a list of files that need processing
|
||||
files_to_process = [
|
||||
(key, etag) for key, etag in files.items()
|
||||
if not db_manager.is_file_processed(key, etag)
|
||||
]
|
||||
|
||||
if not files_to_process:
|
||||
print("All files are up to date. No processing needed.")
|
||||
db_manager.close()
|
||||
return
|
||||
|
||||
# Use ProcessPoolExecutor to process files with tqdm progress bar
|
||||
with ProcessPoolExecutor() as executor:
|
||||
futures = [
|
||||
executor.submit(process_file, bucket, key, etag)
|
||||
for key, etag in files_to_process
|
||||
]
|
||||
for future in tqdm(as_completed(futures), total=len(futures), desc="Processing files"):
|
||||
s3_path, key, etag, index_entries = future.result()
|
||||
if index_entries:
|
||||
db_manager.add_index_entries(index_entries)
|
||||
# Update the processed_files table
|
||||
db_manager.update_processed_file(key, etag)
|
||||
|
||||
db_manager.close()
|
||||
|
||||
def parse_s3_path(s3_path):
|
||||
if not s3_path.startswith('s3://'):
|
||||
raise ValueError('s3_path must start with s3://')
|
||||
@ -159,13 +125,13 @@ def parse_s3_path(s3_path):
|
||||
bucket, _, prefix = path.partition('/')
|
||||
return bucket, prefix
|
||||
|
||||
|
||||
def expand_s3_glob(s3_glob: str) -> dict[str, str]:
|
||||
parsed = urlparse(s3_glob)
|
||||
bucket_name = parsed.netloc
|
||||
prefix = os.path.dirname(parsed.path.lstrip('/')).rstrip('/') + "/"
|
||||
pattern = os.path.basename(parsed.path)
|
||||
|
||||
|
||||
paginator = s3.get_paginator('list_objects_v2')
|
||||
page_iterator = paginator.paginate(Bucket=bucket_name, Prefix=prefix)
|
||||
|
||||
@ -178,37 +144,43 @@ def expand_s3_glob(s3_glob: str) -> dict[str, str]:
|
||||
|
||||
return matched_files
|
||||
|
||||
def process_file(bucket, key, etag):
|
||||
s3 = boto3.client('s3') # Initialize s3 client in the worker process
|
||||
s3_path = f's3://{bucket}/{key}'
|
||||
try:
|
||||
# Get the object
|
||||
obj = s3.get_object(Bucket=bucket, Key=key)
|
||||
# Read the content as bytes
|
||||
content = obj['Body'].read()
|
||||
# Process the file as JSONL
|
||||
index_entries = process_jsonl_content(content, s3_path)
|
||||
# Return the necessary data to the main process
|
||||
return s3_path, key, etag, index_entries
|
||||
except Exception as e:
|
||||
print(f"Error processing file {s3_path}: {e}")
|
||||
return s3_path, key, etag, []
|
||||
@dataclass(frozen=True)
|
||||
class BatchInferenceLine:
|
||||
s3_path: str
|
||||
page_num: int # 1 indexed!
|
||||
start_index: int
|
||||
length: int
|
||||
finish_reason: str
|
||||
error: Optional[str]
|
||||
|
||||
def parse_custom_id(custom_id: str) -> tuple[str, int]:
|
||||
s3_path = custom_id[:custom_id.rindex("-")]
|
||||
page_num = int(custom_id[custom_id.rindex("-") + 1:])
|
||||
|
||||
return s3_path, page_num
|
||||
|
||||
def process_jsonl_content(s3_path) -> list[BatchInferenceLine]:
|
||||
content = get_s3_bytes(s3_path).decode("utf-8")
|
||||
|
||||
def process_jsonl_content(content, s3_path):
|
||||
start_index = 0
|
||||
index_entries = []
|
||||
lines = content.splitlines(keepends=True)
|
||||
for line in lines:
|
||||
line_length = len(line)
|
||||
end_index = start_index + line_length
|
||||
|
||||
try:
|
||||
data = json.loads(line)
|
||||
custom_id = data.get('custom_id')
|
||||
if custom_id:
|
||||
index_entries.append((custom_id, s3_path, start_index, end_index))
|
||||
s3_path, page_num = parse_custom_id(data["custom_id"])
|
||||
|
||||
assert "outputs" in data and len(data["outputs"]) > 0, "No outputs from model detected"
|
||||
|
||||
index_entries.append(BatchInferenceLine(s3_path, page_num, start_index, line_length,
|
||||
finish_reason=data["outputs"][0]["finish_reason"], error=data.get("completion_error", None)))
|
||||
except json.JSONDecodeError:
|
||||
pass # Handle JSON decode errors if necessary
|
||||
start_index = end_index
|
||||
|
||||
start_index = start_index + line_length
|
||||
|
||||
return index_entries
|
||||
|
||||
def get_s3_bytes(s3_path: str, start_index: Optional[int] = None, end_index: Optional[int] = None) -> bytes:
|
||||
@ -246,7 +218,7 @@ def get_pdf_num_pages(s3_path: str) -> Optional[int]:
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Manager for running millions of PDFs through a batch inference pipeline')
|
||||
parser.add_argument('workspace', help='The S3 path where work will be done e.g., s3://bucket/prefix/)')
|
||||
parser.add_argument('--pdfs', help='Glob path to PDFs (local or s3)', default=None)
|
||||
parser.add_argument('--add_pdfs', help='Glob path to add PDFs (s3) to the workspace', default=None)
|
||||
parser.add_argument('--file_size_limit', type=int, default=250, help='Max file size in MB')
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -258,12 +230,12 @@ if __name__ == '__main__':
|
||||
executor = ProcessPoolExecutor()
|
||||
|
||||
# If you have new PDFs, add them to the list
|
||||
if args.pdfs:
|
||||
assert args.pdfs.startswith("s3://"), "PDFs must live on s3"
|
||||
if args.add_pdfs:
|
||||
assert args.add_pdfs.startswith("s3://"), "PDFs must live on s3"
|
||||
|
||||
print(f"Querying all PDFs at {args.pdfs}")
|
||||
print(f"Querying all PDFs at {args.add_pdfs}")
|
||||
|
||||
all_pdfs = expand_s3_glob(args.pdfs)
|
||||
all_pdfs = expand_s3_glob(args.add_pdfs)
|
||||
print(f"Found {len(all_pdfs)} total pdf paths")
|
||||
|
||||
all_pdfs = [pdf for pdf in all_pdfs if not db.pdf_exists(pdf)]
|
||||
@ -279,8 +251,21 @@ if __name__ == '__main__':
|
||||
|
||||
|
||||
# Now build an index of all the pages that were processed within the workspace so far
|
||||
build_index(f"{args.workspace}/*.jsonl")
|
||||
inference_output_paths = expand_s3_glob(f"{args.workspace}/inference_outputs/*.jsonl")
|
||||
|
||||
inference_output_paths = [
|
||||
(key, etag) for key, etag in inference_output_paths.items()
|
||||
if not db.is_file_processed(key, etag)
|
||||
]
|
||||
|
||||
future_to_path = {executor.submit(process_jsonl_content, s3_path): s3_path for s3_path, etag in inference_output_paths}
|
||||
|
||||
for future in tqdm(as_completed(future_to_path), total=len(future_to_path)):
|
||||
s3_path = future_to_path[future]
|
||||
|
||||
inference_lines = future.result()
|
||||
|
||||
db.add_index_entries(inference_lines)
|
||||
|
||||
db.update_processed_file(s3_path, etag=TODO)
|
||||
|
||||
# Now, for each pending book, find all pages which still need to be processed
|
||||
# and add them to the next round's batch inference jobs
|
||||
|
Loading…
x
Reference in New Issue
Block a user