mirror of
https://github.com/allenai/olmocr.git
synced 2025-06-27 04:00:02 +00:00
Remvoing sglang tests, switch to vllm
This commit is contained in:
parent
6e3fba3c59
commit
b588ae27d2
@ -1,400 +0,0 @@
|
||||
# The idea is that you have a Qwen2-VL-7B model located here:s3://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/"
|
||||
|
||||
# You need to load it in both hugging face transformers, and send page 1 of edgar.pdf to it from tests/gnarly_pdfs
|
||||
# Compare that the temperature 0 sampled result is the same
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import unittest
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from httpx import AsyncClient
|
||||
from PIL import Image
|
||||
from transformers import AutoProcessor, AutoTokenizer, Qwen2VLForConditionalGeneration
|
||||
|
||||
from olmocr.pipeline import (
|
||||
SGLANG_SERVER_PORT,
|
||||
build_page_query,
|
||||
get_anchor_text,
|
||||
render_pdf_to_base64png,
|
||||
sglang_server_ready,
|
||||
sglang_server_task,
|
||||
)
|
||||
from olmocr.prompts import PageResponse
|
||||
|
||||
MODEL_FINETUNED_PATH = (
|
||||
"s3://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.nonci
|
||||
class TestSglangServer(unittest.IsolatedAsyncioTestCase):
|
||||
async def asyncSetUp(self):
|
||||
# Mock arguments
|
||||
self.args = AsyncMock()
|
||||
self.args.workspace = "/tmp/test_workspace"
|
||||
self.args.model = [MODEL_FINETUNED_PATH]
|
||||
self.args.model_chat_template = "qwen2-vl"
|
||||
self.args.target_longest_image_dim = 1024
|
||||
self.args.target_anchor_text_len = 6000
|
||||
self.args.model_max_context = 8192
|
||||
|
||||
# Create a temporary workspace directory
|
||||
os.makedirs(self.args.workspace, exist_ok=True)
|
||||
|
||||
# Set up a semaphore for server tasks
|
||||
self.semaphore = asyncio.Semaphore(1)
|
||||
self.maxDiff = None
|
||||
|
||||
# # Start the sglang server
|
||||
# self.my_server_task = asyncio.create_task(sglang_server_task(self.args, self.semaphore))
|
||||
|
||||
# # Wait for the server to become ready
|
||||
# await sglang_server_ready()
|
||||
|
||||
async def test_sglang_server_initialization_and_request(self):
|
||||
# Mock data paths
|
||||
self.test_pdf_path = Path(os.path.join(os.path.dirname(__file__), "gnarly_pdfs", "ambiguous.pdf"))
|
||||
|
||||
# Send a single request to the sglang server for page 1
|
||||
async with AsyncClient(timeout=600) as session:
|
||||
query = await build_page_query(
|
||||
str(self.test_pdf_path),
|
||||
page=1,
|
||||
target_longest_image_dim=self.args.target_longest_image_dim,
|
||||
target_anchor_text_len=self.args.target_anchor_text_len,
|
||||
)
|
||||
COMPLETION_URL = f"http://localhost:{30000}/v1/chat/completions"
|
||||
|
||||
query["temperature"] = 0.0
|
||||
query["logprobs"] = True
|
||||
query["top_logprobs"] = 5
|
||||
response = await session.post(COMPLETION_URL, json=query)
|
||||
|
||||
print(response.text)
|
||||
|
||||
# Check the server response
|
||||
self.assertEqual(response.status_code, 200)
|
||||
response_data = response.json()
|
||||
self.assertIn("choices", response_data)
|
||||
self.assertGreater(len(response_data["choices"]), 0)
|
||||
|
||||
model_response_json = json.loads(response_data["choices"][0]["message"]["content"])
|
||||
page_response = PageResponse(**model_response_json)
|
||||
|
||||
print(page_response)
|
||||
|
||||
self.assertEqual(page_response.natural_text, EDGAR_TEXT)
|
||||
|
||||
async def asyncTearDown(self):
|
||||
pass
|
||||
# # Shut down the server
|
||||
# self.my_server_task.cancel()
|
||||
# with self.assertRaises(asyncio.CancelledError):
|
||||
# await self.my_server_task
|
||||
|
||||
# # Cleanup temporary workspace
|
||||
# if os.path.exists(self.args.workspace):
|
||||
# for root, _, files in os.walk(self.args.workspace):
|
||||
# for file in files:
|
||||
# os.unlink(os.path.join(root, file))
|
||||
# os.rmdir(self.args.workspace)
|
||||
|
||||
|
||||
@pytest.mark.nonci
|
||||
class TestHuggingFaceModel(unittest.IsolatedAsyncioTestCase):
|
||||
async def asyncSetUp(self):
|
||||
# Set up the Hugging Face model and tokenizer
|
||||
model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "olmocr", "model")
|
||||
download_directory([MODEL_FINETUNED_PATH], model_cache_dir)
|
||||
|
||||
# Check the rope config and make sure it's got the proper key
|
||||
with open(os.path.join(model_cache_dir, "config.json"), "r") as cfin:
|
||||
config_data = json.load(cfin)
|
||||
|
||||
if "rope_type" in config_data["rope_scaling"]:
|
||||
del config_data["rope_scaling"]["rope_type"]
|
||||
config_data["rope_scaling"]["type"] = "mrope"
|
||||
|
||||
with open(os.path.join(model_cache_dir, "config.json"), "w") as cfout:
|
||||
json.dump(config_data, cfout)
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_cache_dir, trust_remote_code=True)
|
||||
self.image_token_id = self.tokenizer.encode("<|image_pad|>")[0]
|
||||
|
||||
self.model = Qwen2VLForConditionalGeneration.from_pretrained(model_cache_dir, torch_dtype=torch.bfloat16, trust_remote_code=True).eval()
|
||||
self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.model.to(self.device)
|
||||
|
||||
# Path to the test PDF
|
||||
self.test_pdf_path = Path(os.path.join(os.path.dirname(__file__), "gnarly_pdfs", "ambiguous.pdf"))
|
||||
self.maxDiff = None
|
||||
|
||||
async def test_hugging_face_generation(self):
|
||||
query = await build_page_query(
|
||||
str(self.test_pdf_path),
|
||||
page=1,
|
||||
target_longest_image_dim=1024,
|
||||
target_anchor_text_len=6000,
|
||||
)
|
||||
|
||||
messages = query["messages"]
|
||||
|
||||
# Apply chat template to get the text
|
||||
text = self.processor.apply_chat_template(query["messages"], tokenize=False, add_generation_prompt=True)
|
||||
|
||||
image_url = query["messages"][0]["content"][1]["image_url"]["url"]
|
||||
|
||||
# Remove the "data:image/png;base64," prefix
|
||||
base64_image = image_url.split(",")[1]
|
||||
|
||||
# Decode the base64 string into bytes
|
||||
image_data = base64.b64decode(base64_image)
|
||||
|
||||
# Create a BytesIO object and load it into a PIL image
|
||||
main_image = Image.open(BytesIO(image_data))
|
||||
|
||||
# Process inputs using processor
|
||||
inputs = self.processor(
|
||||
text=[text],
|
||||
images=[main_image],
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
image_indices = [idx for idx, token in enumerate(inputs["input_ids"][0]) if token.item() == self.image_token_id]
|
||||
|
||||
print("IMAGE INDICES", image_indices)
|
||||
|
||||
print(f"image_grid_thw - {inputs['image_grid_thw'].shape} {inputs['image_grid_thw']}")
|
||||
print(f"pixel_values - {inputs['pixel_values'].shape} {inputs['pixel_values'].detach().cpu().numpy()}")
|
||||
np.save("/root/pixel_values.npy", inputs["pixel_values"].detach().cpu().numpy())
|
||||
|
||||
inputs = {key: value.to(self.device) for (key, value) in inputs.items()}
|
||||
|
||||
generated_tokens = []
|
||||
max_steps = 50
|
||||
|
||||
top_logprobs_hf = []
|
||||
|
||||
for step in range(max_steps):
|
||||
# Generate the output with temperature=0
|
||||
generation_output = self.model.generate(
|
||||
**inputs,
|
||||
temperature=0.0,
|
||||
max_new_tokens=1,
|
||||
# max_length=8192,
|
||||
num_return_sequences=1,
|
||||
do_sample=False,
|
||||
output_scores=True,
|
||||
return_dict_in_generate=True,
|
||||
)
|
||||
|
||||
# Extract the generated token's log probabilities
|
||||
scores = generation_output.scores # Tuple of length 1
|
||||
logits = scores[0] # Tensor of shape (batch_size, vocab_size)
|
||||
log_probs = F.log_softmax(logits, dim=-1) # Apply log softmax to get log probabilities
|
||||
|
||||
# Get top 5 tokens and their log probabilities
|
||||
topk_log_probs, topk_indices = torch.topk(log_probs[0], k=5)
|
||||
topk_tokens = self.tokenizer.convert_ids_to_tokens(topk_indices.tolist())
|
||||
|
||||
top_logprobs_hf.append((topk_tokens, topk_log_probs.tolist()))
|
||||
|
||||
# Pick the top token
|
||||
next_token_id = topk_indices[0].unsqueeze(0).unsqueeze(0) # Shape: (1, 1)
|
||||
next_token_str = self.tokenizer.convert_ids_to_tokens([next_token_id.item()])[0]
|
||||
|
||||
generated_tokens.append(next_token_id.item())
|
||||
|
||||
# Append the next token to input_ids and update attention_mask
|
||||
inputs["input_ids"] = torch.cat([inputs["input_ids"], next_token_id], dim=-1)
|
||||
inputs["attention_mask"] = torch.cat([inputs["attention_mask"], torch.ones((1, 1), dtype=inputs["attention_mask"].dtype).to(self.device)], dim=-1)
|
||||
|
||||
print(self.tokenizer.decode(generated_tokens))
|
||||
|
||||
# Now take all the input ids and run them through sglang as a comparison
|
||||
async with AsyncClient(timeout=600) as session:
|
||||
query["temperature"] = 0.0
|
||||
query["max_tokens"] = max_steps
|
||||
query["logprobs"] = True
|
||||
query["top_logprobs"] = 5
|
||||
COMPLETION_URL = f"http://localhost:{30000}/v1/chat/completions"
|
||||
response = await session.post(COMPLETION_URL, json=query)
|
||||
|
||||
response_data = response.json()
|
||||
|
||||
for step, lptok in enumerate(response_data["choices"][0]["logprobs"]["content"]):
|
||||
print("\nTop 5 tokens and their log probabilities:")
|
||||
(topk_tokens, topk_log_probs) = top_logprobs_hf[step]
|
||||
for token, log_prob, lptokcur in zip(topk_tokens, topk_log_probs, lptok["top_logprobs"]):
|
||||
print(
|
||||
f"HF Token: {token} Log Prob: {log_prob:.2f} Prob {math.exp(log_prob)*100:.2f}% SGLANG Token {lptokcur['token']} Logprob {lptokcur['logprob']:.2f} Prob {math.exp(lptokcur['logprob'])*100:.2f}%"
|
||||
)
|
||||
|
||||
async def asyncTearDown(self):
|
||||
# Clean up the model and tokenizer
|
||||
del self.model
|
||||
del self.tokenizer
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.nonci
|
||||
class RawSGLangTest(unittest.IsolatedAsyncioTestCase):
|
||||
def setUp(self):
|
||||
# Set up the Hugging Face model and tokenizer
|
||||
model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "olmocr", "model")
|
||||
download_directory([MODEL_FINETUNED_PATH], model_cache_dir)
|
||||
|
||||
# Check the rope config and make sure it's got the proper key
|
||||
with open(os.path.join(model_cache_dir, "config.json"), "r") as cfin:
|
||||
config_data = json.load(cfin)
|
||||
|
||||
if "rope_type" in config_data["rope_scaling"]:
|
||||
del config_data["rope_scaling"]["rope_type"]
|
||||
config_data["rope_scaling"]["type"] = "mrope"
|
||||
|
||||
with open(os.path.join(model_cache_dir, "config.json"), "w") as cfout:
|
||||
json.dump(config_data, cfout)
|
||||
|
||||
self.model_cache_dir = model_cache_dir
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_cache_dir, trust_remote_code=True)
|
||||
self.image_token_id = self.tokenizer.encode("<|image_pad|>")[0]
|
||||
|
||||
self.model = Qwen2VLForConditionalGeneration.from_pretrained(model_cache_dir, torch_dtype=torch.bfloat16, trust_remote_code=True).eval()
|
||||
self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.model.to(self.device)
|
||||
|
||||
# Path to the test PDF
|
||||
self.test_pdf_path = Path(os.path.join(os.path.dirname(__file__), "gnarly_pdfs", "ambiguous.pdf"))
|
||||
self.maxDiff = None
|
||||
|
||||
async def test_vision_encoder(self):
|
||||
query = await build_page_query(
|
||||
str(self.test_pdf_path),
|
||||
page=1,
|
||||
target_longest_image_dim=1024,
|
||||
target_anchor_text_len=6000,
|
||||
)
|
||||
|
||||
messages = query["messages"]
|
||||
|
||||
# Apply chat template to get the text
|
||||
text = self.processor.apply_chat_template(query["messages"], tokenize=False, add_generation_prompt=True)
|
||||
|
||||
image_url = query["messages"][0]["content"][1]["image_url"]["url"]
|
||||
|
||||
# Remove the "data:image/png;base64," prefix
|
||||
base64_image = image_url.split(",")[1]
|
||||
|
||||
# Decode the base64 string into bytes
|
||||
image_data = base64.b64decode(base64_image)
|
||||
|
||||
# Create a BytesIO object and load it into a PIL image
|
||||
main_image = Image.open(BytesIO(image_data))
|
||||
|
||||
# Process inputs using processor
|
||||
inputs = self.processor(
|
||||
text=[text],
|
||||
images=[main_image],
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
hf_output = self.model.visual(inputs["pixel_values"].to(self.device), grid_thw=inputs["image_grid_thw"].to(self.device))
|
||||
|
||||
print("HF", hf_output, hf_output.shape)
|
||||
|
||||
from sglang.srt.configs.model_config import ModelConfig
|
||||
from sglang.srt.hf_transformers_utils import get_tokenizer
|
||||
from sglang.srt.managers.schedule_batch import Req, ScheduleBatch
|
||||
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
||||
from sglang.srt.model_executor.model_runner import ModelRunner
|
||||
from sglang.srt.sampling.sampling_params import SamplingParams
|
||||
from sglang.srt.server_args import PortArgs, ServerArgs
|
||||
|
||||
model_config = ModelConfig(self.model_cache_dir, model_override_args="{}")
|
||||
|
||||
server_args = ServerArgs(model_path=self.model_cache_dir)
|
||||
# Initialize model runner
|
||||
model_runner = ModelRunner(
|
||||
model_config=model_config,
|
||||
mem_fraction_static=0.8,
|
||||
gpu_id=0,
|
||||
tp_rank=0,
|
||||
tp_size=1,
|
||||
nccl_port=12435,
|
||||
server_args=server_args,
|
||||
)
|
||||
|
||||
print(model_runner)
|
||||
with torch.no_grad():
|
||||
sglang_output = model_runner.model.visual(inputs["pixel_values"].to(self.device), grid_thw=inputs["image_grid_thw"].to(self.device))
|
||||
|
||||
print("SGLANG", sglang_output, sglang_output.shape)
|
||||
|
||||
# Convert to float32 for numerical stability if needed
|
||||
hf = hf_output.float()
|
||||
sg = sglang_output.float()
|
||||
|
||||
# Basic shape and dtype comparison
|
||||
print("\n=== Basic Properties ===")
|
||||
print(f"Shapes match: {hf.shape == sg.shape}")
|
||||
print(f"HF shape: {hf.shape}, SGLang shape: {sg.shape}")
|
||||
print(f"HF dtype: {hf.dtype}, SGLang dtype: {sg.dtype}")
|
||||
|
||||
# Move tensors to CPU for numpy operations
|
||||
hf_np = hf.cpu().numpy()
|
||||
sg_np = sg.cpu().numpy()
|
||||
|
||||
# Statistical metrics
|
||||
print("\n=== Statistical Metrics ===")
|
||||
print(f"Mean absolute difference: {torch.mean(torch.abs(hf - sg)).item():.6f}")
|
||||
print(f"Max absolute difference: {torch.max(torch.abs(hf - sg)).item():.6f}")
|
||||
print(f"Mean squared error: {torch.mean((hf - sg) ** 2).item():.6f}")
|
||||
print(f"Root mean squared error: {torch.sqrt(torch.mean((hf - sg) ** 2)).item():.6f}")
|
||||
|
||||
# Cosine similarity (across feature dimension)
|
||||
cos_sim = F.cosine_similarity(hf, sg)
|
||||
print(f"Mean cosine similarity: {torch.mean(cos_sim).item():.6f}")
|
||||
print(f"Min cosine similarity: {torch.min(cos_sim).item():.6f}")
|
||||
|
||||
# Find largest absolute differences
|
||||
print("\n=== Largest Absolute Differences ===")
|
||||
diffs = torch.abs(hf - sg)
|
||||
flat_diffs = diffs.flatten()
|
||||
|
||||
# Get indices of top 10 differences
|
||||
top_k = 10
|
||||
top_values, top_flat_indices = torch.topk(flat_diffs, top_k)
|
||||
|
||||
# Convert flat indices to multidimensional indices
|
||||
top_indices = np.unravel_index(top_flat_indices.cpu().numpy(), diffs.shape)
|
||||
|
||||
print(f"\nTop {top_k} largest absolute differences:")
|
||||
print("Index".ljust(30) + "Difference".ljust(15) + "HF Value".ljust(15) + "SGLang Value")
|
||||
print("-" * 75)
|
||||
|
||||
for i in range(top_k):
|
||||
# Get the index tuple for this difference
|
||||
idx = tuple(dim[i] for dim in top_indices)
|
||||
diff_val = top_values[i].item()
|
||||
hf_val = hf[idx].item()
|
||||
sg_val = sg[idx].item()
|
||||
|
||||
# Format the index tuple and values
|
||||
idx_str = str(idx)
|
||||
print(f"{idx_str:<30}{diff_val:<15.6f}{hf_val:<15.6f}{sg_val:.6f}")
|
Loading…
x
Reference in New Issue
Block a user