fixes missing OSS code for Issue #36

This commit is contained in:
Jake Poznanski 2025-02-26 17:49:04 +00:00
parent d4b902cea2
commit bd08fdb476
6 changed files with 466 additions and 8 deletions

View File

@ -0,0 +1,69 @@
from typing import Type
from sequence_align.pairwise import hirschberg, needleman_wunsch
from .registry import BaseRegistry
class AlignerRegistry(BaseRegistry[Type["BaseAligner"]]):
"""A registry for aligners."""
class BaseAligner:
def __init__(self, *args, **kwargs):
super().__init__()
def align(self, gold: list[str], pred: list[str]) -> tuple[list[str], list[str]]:
raise NotImplementedError()
@AlignerRegistry.add("hirschberg")
class HirschbergAligner(BaseAligner):
def __init__(
self,
match_score: float = 1.0,
mismatch_score: float = -1.0,
indel_score: float = -1.0,
gap_token: str = "",
):
self.match_score = match_score
self.mismatch_score = mismatch_score
self.indel_score = indel_score
self.gap_token = gap_token
super().__init__()
def align(self, gold: list[str], pred: list[str]) -> tuple[list[str], list[str]]:
return hirschberg(
gold,
pred,
match_score=self.match_score,
mismatch_score=self.mismatch_score,
indel_score=self.indel_score,
gap=self.gap_token,
)
@AlignerRegistry.add("needleman-wunsch")
class NeedlemanWunschAligner(BaseAligner):
def __init__(
self,
match_score: float = 1.0,
mismatch_score: float = -1.0,
indel_score: float = -1.0,
gap_token: str = "",
):
self.match_score = match_score
self.mismatch_score = mismatch_score
self.indel_score = indel_score
self.gap_token = gap_token
super().__init__()
def align(self, gold: list[str], pred: list[str]) -> tuple[list[str], list[str]]:
return needleman_wunsch(
gold,
pred,
match_score=self.match_score,
mismatch_score=self.mismatch_score,
indel_score=self.indel_score,
gap=self.gap_token,
)

View File

@ -0,0 +1,237 @@
import bisect
from typing import Type
import regex as re
from tqdm import tqdm
from .aligners import BaseAligner
from .segmenters import BaseSegmenter, SegmenterRegistry
from .registry import BaseRegistry
class TextMetricRegistry(BaseRegistry[Type["BaseTextMetric"]]):
"""A registry for text metrics."""
class BaseTextMetric:
def __init__(self, *args, **kwargs):
super().__init__()
def compute(self, gold: str, pred: str) -> float:
raise NotImplementedError()
def batch_compute(self, golds: list[str], preds: list[str]) -> list[float]:
it = tqdm(
zip(golds, preds),
total=min(len(golds), len(preds)),
desc=type(self).__name__,
unit="samples",
unit_scale=True,
)
return [self.compute(gold, pred) for gold, pred in it]
class BaseTextAlignMetric(BaseTextMetric):
def __init__(
self,
segmenter: str | BaseSegmenter,
aligner: str | BaseAligner = "hirschberg",
aligner_kwargs: dict = {},
segmenter_kwargs: dict = {},
gap_token: str = "",
*args,
**kwargs,
):
if isinstance(segmenter, str):
self.segmenter = SegmenterRegistry.get(segmenter)(segmenter, **segmenter_kwargs)
else:
self.segmenter = segmenter
if isinstance(aligner, str):
self.aligner = AlignerRegistry.get(aligner)(aligner, **aligner_kwargs)
else:
self.aligner = aligner
self.gap_token = gap_token
def segment(self, seq_a_tokens: list[str], seq_b_tokens: list[str]) -> list[tuple[list[str], list[str]]]:
return [(seq_a_tokens, seq_b_tokens)]
def align(self, seq_a_tokens: list[str], seq_b_tokens: list[str]) -> tuple[list[str], list[str]]:
return self.aligner.align(seq_a_tokens, seq_b_tokens)
def tokenize(self, text: str) -> list[str]:
return [w for w in re.split(r"(\p{P}+|\s+)", text) if w]
def compute(self, gold: str, pred: str) -> float:
raise NotImplementedError()
@TextMetricRegistry.add("document_edit_similarity")
class DocumentEditSimilarity(BaseTextAlignMetric):
def _score_aligned(self, aligned_gold_tokens: list[str], aligned_pred_tokens: list[str]) -> float:
insertions = deletions = matches = substitutions = 0.0
for gold_symbol, pred_symbol in zip(aligned_gold_tokens, aligned_pred_tokens):
if gold_symbol == self.gap_token:
insertions += 1
elif pred_symbol == self.gap_token:
deletions += 1
elif gold_symbol == pred_symbol:
matches += 1
else:
substitutions += 1
if total := insertions + deletions + matches + substitutions:
return matches / total
return 0.0
def compute(self, gold: str, pred: str) -> float:
gold_tokens = self.tokenize(gold)
pred_tokens = self.tokenize(pred)
aligned_gold_tokens, aligned_pred_tokens = self.align(gold_tokens, pred_tokens)
return self._score_aligned(aligned_gold_tokens, aligned_pred_tokens)
def find_align_gaps(aligned_text: list[str], gap_token: str = "", gap_threshold: int = 3) -> list[int]:
consecutive_gaps_counter = 0
above_threshold_locs: list[int] = []
for aligned_pos, symbol in enumerate(aligned_text):
if symbol == gap_token:
consecutive_gaps_counter += 1
else:
consecutive_gaps_counter = 0
if consecutive_gaps_counter >= gap_threshold:
above_threshold_locs.append(aligned_pos)
consecutive_gaps_counter = 0
return above_threshold_locs
def make_unaligned_text(tokens: list[str], gap_token: str = "") -> str:
return "".join(symbol for symbol in tokens if symbol != gap_token)
def find_sentences(
tokens: list[str],
sentences: list[str],
gap_token: str = "",
):
matches: list[tuple[int, int]] = []
original_text = ""
original: list[int] = []
original_to_aligned: list[int] = []
for i, token in enumerate(tokens):
if token != gap_token:
original_text += token
original.append(len(original_text))
original_to_aligned.append(i)
matches = []
for sentence in sentences:
start_pos = original_text.find(sentence)
if start_pos < 0:
continue
end_pos = start_pos + len(sentence)
start_token = original_to_aligned[bisect.bisect_left(original, start_pos)]
end_token = original_to_aligned[min(bisect.bisect_right(original, end_pos), len(original) - 1)]
matches.append((start_token, end_token))
return matches
def merge_spans(spans: list[tuple[int, int]]) -> list[tuple[int, int]]:
if not spans:
return []
# Sort spans based on start position
sorted_spans = sorted(spans, key=lambda x: x[0])
merged = [sorted_spans[0]]
for current in sorted_spans[1:]:
last = merged[-1]
# If current span overlaps with last merged span, update the end of last span
if current[0] <= last[1]:
merged[-1] = (last[0], max(last[1], current[1]))
else:
merged.append(current)
return merged
def make_sentences_around_gaps(sent_locs: list[tuple[int, int]], gaps_locs: list[int], window: int):
sent_start_only = [start for start, _ in sent_locs]
sentences_with_gaps = []
# collect all sentences that are around the gaps
for gap in gaps_locs:
start_idx = bisect.bisect_left(sent_start_only, gap)
fwd_window = max(0, start_idx - window)
bwd_window = min(len(sent_locs) - 1, start_idx + window)
sentences_with_gaps.append((sent_locs[fwd_window][0], sent_locs[bwd_window][-1]))
# merge overlapping sentences
sentences_with_gaps = merge_spans(sentences_with_gaps)
return sentences_with_gaps
@TextMetricRegistry.add("paragraph_edit_similarity")
class ParagraphEditSimilarity(DocumentEditSimilarity):
def __init__(
self,
segmenter: str | BaseSegmenter,
aligner: str | BaseAligner = "hirschberg",
aligner_kwargs: dict = {},
segmenter_kwargs: dict = {},
gap_token: str = "",
gap_threshold: int = 3,
sent_window: int = 1,
*args,
**kwargs,
):
super().__init__(
segmenter=segmenter,
aligner=aligner,
aligner_kwargs=aligner_kwargs,
segmenter_kwargs=segmenter_kwargs,
gap_token=gap_token,
)
self.gap_threshold = gap_threshold
self.sent_window = sent_window
def segment(self, seq_a_tokens: list[str], seq_b_tokens: list[str]) -> list[tuple[list[str], list[str]]]:
all_spans = []
for seq_tokens in (seq_a_tokens, seq_b_tokens):
text = make_unaligned_text(tokens=seq_tokens, gap_token=self.gap_token)
sentences = self.segmenter.segment(text)
sent_locs = find_sentences(tokens=seq_tokens, sentences=sentences, gap_token=self.gap_token)
gaps_locs = find_align_gaps(aligned_text=seq_tokens, gap_token=self.gap_token, gap_threshold=3)
sentences_with_gaps = make_sentences_around_gaps(
sent_locs=sent_locs, gaps_locs=gaps_locs, window=self.sent_window
)
all_spans.extend(sentences_with_gaps)
return [(seq_a_tokens[start:end], seq_b_tokens[start:end]) for start, end in merge_spans(all_spans)]
def compute(self, gold: str, pred: str) -> float:
gold_tokens = self.tokenize(gold)
pred_tokens = self.tokenize(pred)
aligned_gold_tokens, aligned_pred_tokens = self.align(gold_tokens, pred_tokens)
scores = []
for gold_segment, pred_segment in self.segment(aligned_gold_tokens, aligned_pred_tokens):
score = self._score_aligned(gold_segment, pred_segment)
scores.append(score)
return sum(scores) / len(scores) if scores else 1.0

View File

@ -0,0 +1,122 @@
import re
from typing import (
Callable,
Dict,
Generator,
Generic,
Literal,
Optional,
Tuple,
Type,
TypeVar,
overload,
)
T = TypeVar("T")
R = TypeVar("R")
class BaseRegistry(Generic[T]):
"""A registry for objects."""
_registry_of_registries: Dict[str, Type["BaseRegistry"]] = {}
_registry_storage: Dict[str, Tuple[T, Optional[str]]]
@classmethod
def _add_to_registry_of_registries(cls) -> None:
name = cls.__name__
if name not in cls._registry_of_registries:
cls._registry_of_registries[name] = cls
@classmethod
def registries(cls) -> Generator[Tuple[str, Type["BaseRegistry"]], None, None]:
"""Yield all registries in the registry of registries."""
yield from sorted(cls._registry_of_registries.items())
@classmethod
def _get_storage(cls) -> Dict[str, Tuple[T, Optional[str]]]:
if not hasattr(cls, "_registry_storage"):
cls._registry_storage = {}
return cls._registry_storage # pyright: ignore
@classmethod
def items(cls) -> Generator[Tuple[str, T], None, None]:
"""Yield all items in the registry."""
yield from sorted((n, t) for (n, (t, _)) in cls._get_storage().items())
@classmethod
def items_with_description(cls) -> Generator[Tuple[str, T, Optional[str]], None, None]:
"""Yield all items in the registry with their descriptions."""
yield from sorted((n, t, d) for (n, (t, d)) in cls._get_storage().items())
@classmethod
def add(cls, name: str, desc: Optional[str] = None) -> Callable[[R], R]:
"""Add a class to the registry."""
# Add the registry to the registry of registries
cls._add_to_registry_of_registries()
def _add(
inner_self: T,
inner_name: str = name,
inner_desc: Optional[str] = desc,
inner_cls: Type[BaseRegistry] = cls,
) -> T:
"""Add a tagger to the registry using tagger_name as the name."""
existing = inner_cls.get(inner_name, raise_on_missing=False)
if existing and existing != inner_self:
if inner_self.__module__ == "__main__":
return inner_self
raise ValueError(f"Tagger {inner_name} already exists")
inner_cls._get_storage()[inner_name] = (inner_self, inner_desc)
return inner_self
return _add # type: ignore
@classmethod
def remove(cls, name: str) -> bool:
"""Remove a tagger from the registry."""
if name in cls._get_storage():
cls._get_storage().pop(name)
return True
return False
@classmethod
def has(cls, name: str) -> bool:
"""Check if a tagger exists in the registry."""
return name in cls._get_storage()
@overload
@classmethod
def get(cls, name: str) -> T: ...
@overload
@classmethod
def get(cls, name: str, raise_on_missing: Literal[True]) -> T: ...
@overload
@classmethod
def get(cls, name: str, raise_on_missing: Literal[False]) -> Optional[T]: ...
@classmethod
def get(cls, name: str, raise_on_missing: bool = True) -> Optional[T]:
"""Get a tagger from the registry; raise ValueError if it doesn't exist."""
matches = [registered for registered in cls._get_storage() if re.match(registered, name)]
if len(matches) > 1:
raise ValueError(f"Multiple taggers match {name}: {', '.join(matches)}")
elif len(matches) == 0:
if raise_on_missing:
tagger_names = ", ".join([tn for tn, _ in cls.items()])
raise ValueError(f"Unknown tagger {name}; available taggers: {tagger_names}")
return None
else:
name = matches[0]
t, _ = cls._get_storage()[name]
return t

View File

@ -0,0 +1,32 @@
import re
from typing import Type
import torch
from spacy.lang.en import English
from .registry import BaseRegistry
class SegmenterRegistry(BaseRegistry[Type["BaseSegmenter"]]):
"""A registry for segmenters."""
class BaseSegmenter:
def __init__(self, segmenter_name_or_path: str, *args, **kwargs):
super().__init__()
def segment(self, text: str) -> list[str]:
raise NotImplementedError()
@SegmenterRegistry.add("spacy")
class SpacySegmenter(BaseSegmenter):
def __init__(self, segmenter_name_or_path: str, *args, **kwargs):
assert segmenter_name_or_path == "spacy", "Only 'spacy' segmenter is supported"
self.nlp = English()
self.nlp.add_pipe("sentencizer")
def segment(self, text: str) -> list[str]:
return [sent.text_with_ws for sent in self.nlp(text).sents]

View File

@ -1,8 +1,4 @@
# This script will build a set of scores for the accuracy of a given pdf conversion tactic against a gold dataset
#
# You might need to pip install git+https://github.com/allenai/refine.git@soldni/eval-m
# in order to use some of the existing aligner scoring that was developed as part
# of the refiner pipeline
import argparse
import hashlib
import json
@ -17,9 +13,9 @@ from typing import Dict, List, Optional
import boto3
import zstandard
from dolma_refine.evaluate.aligners import HirschbergAligner
from dolma_refine.evaluate.metrics import DocumentEditSimilarity
from dolma_refine.evaluate.segmenters import SpacySegmenter
from .dolma_refine.aligners import HirschbergAligner
from .dolma_refine.metrics import DocumentEditSimilarity
from .dolma_refine.segmenters import SpacySegmenter
from smart_open import register_compressor, smart_open
from tqdm import tqdm

View File

@ -39,6 +39,7 @@ dependencies = [
"transformers>=4.46.2",
"fuzzysearch",
"rapidfuzz",
"sequence_align",
"beaker-py",
]
license = {file = "LICENSE"}
@ -72,7 +73,8 @@ dev = [
"necessary",
"peft",
"datasets",
"omegaconf"
"omegaconf",
"spacy",
]