mirror of
https://github.com/allenai/olmocr.git
synced 2025-11-02 02:54:53 +00:00
New send silver script for testing
This commit is contained in:
parent
6e1094ee8a
commit
e87729a653
188
pdelfin/silver_data/sendsilver2.py
Normal file
188
pdelfin/silver_data/sendsilver2.py
Normal file
@ -0,0 +1,188 @@
|
||||
# Sends list of batch files to OpenAI for processing
|
||||
# However, it also waits and gets the files when they are done, saves its state, and
|
||||
# allows you to submit more than the 100GB of file request limits that the openaiAPI has
|
||||
import os
|
||||
import time
|
||||
import json
|
||||
import datetime
|
||||
import argparse
|
||||
from enum import Enum
|
||||
from openai import OpenAI
|
||||
from tqdm import tqdm
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
|
||||
# Set up OpenAI client (API key should be set in the environment)
|
||||
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
||||
|
||||
MAX_OPENAI_DISK_SPACE = 100 * 1024 * 1024 * 1024 # Max is 100GB on openAI
|
||||
UPLOAD_STATE_FILENAME = "SENDSILVER_DATA"
|
||||
|
||||
# Function to upload a file to OpenAI and start batch processing
|
||||
def upload_and_start_batch(file_path):
|
||||
try:
|
||||
# Upload the file to OpenAI
|
||||
with open(file_path, 'rb') as file:
|
||||
print(f"Uploading {file_path} to OpenAI Batch API...")
|
||||
upload_response = client.files.create(file=file, purpose="batch")
|
||||
file_id = upload_response.id
|
||||
print(f"File uploaded successfully: {file_id}")
|
||||
|
||||
# Create a batch job
|
||||
print(f"Creating batch job for {file_path}...")
|
||||
batch_response = client.batches.create(
|
||||
input_file_id=file_id,
|
||||
endpoint="/v1/chat/completions",
|
||||
completion_window="24h",
|
||||
metadata={
|
||||
"description": "pdf gold/silver data"
|
||||
}
|
||||
)
|
||||
|
||||
batch_id = batch_response.id
|
||||
print(f"Batch created successfully: {batch_id}")
|
||||
return batch_id
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {file_path}: {str(e)}")
|
||||
return None
|
||||
|
||||
|
||||
def download_batch_result(batch_id, output_folder):
|
||||
# Retrieve the batch result from OpenAI API
|
||||
batch_data = client.batches.retrieve(batch_id)
|
||||
|
||||
if batch_data.status != "completed":
|
||||
print(f"WARNING: {batch_id} is not completed, status: {batch_data.status}")
|
||||
return batch_id, False
|
||||
|
||||
file_response = client.files.content(batch_data.output_file_id)
|
||||
|
||||
# Define output file path
|
||||
output_file = os.path.join(output_folder, f"{batch_id}.json")
|
||||
|
||||
# Save the result to a file
|
||||
with open(output_file, 'w') as f:
|
||||
f.write(str(file_response.text))
|
||||
|
||||
return batch_id, True
|
||||
|
||||
|
||||
|
||||
|
||||
ALL_STATES = ["init", "processing", "completed", "errored_out", "could_not_upload"]
|
||||
FINISHED_STATES = [ "completed", "errored_out" ]
|
||||
|
||||
|
||||
def get_state(folder_path: str) -> dict:
|
||||
state_file = os.path.join(folder_path, UPLOAD_STATE_FILENAME)
|
||||
|
||||
if os.path.exists(state_file):
|
||||
with open(state_file, "r") as f:
|
||||
return json.load(f)
|
||||
else:
|
||||
# List all .jsonl files in the specified folder
|
||||
jsonl_files = [f for f in os.listdir(folder_path) if f.endswith('.jsonl')]
|
||||
|
||||
if not jsonl_files:
|
||||
raise Exception("No JSONL files found to process")
|
||||
|
||||
state = {f:
|
||||
{
|
||||
"filename": f,
|
||||
"batch_id": None,
|
||||
"state": "init",
|
||||
"size": os.path.getsize(f),
|
||||
"last_checked": datetime.datetime.now(),
|
||||
} for f in jsonl_files}
|
||||
|
||||
with open(state_file, "w") as f:
|
||||
return json.dump(state)
|
||||
|
||||
return state
|
||||
|
||||
def update_state(folder_path: str, filename: str, **kwargs):
|
||||
all_state = get_state(folder_path)
|
||||
for kwarg_name, kwarg_value in kwargs.items():
|
||||
all_state[filename][kwarg_name] = kwarg_value
|
||||
|
||||
all_state[filename]["last_checked"] = datetime.datetime.now()
|
||||
|
||||
state_file = os.path.join(folder_path, UPLOAD_STATE_FILENAME)
|
||||
with open(state_file, "w") as f:
|
||||
return json.dump(all_state)
|
||||
|
||||
def get_total_space_usage():
|
||||
return sum(file.size for file in client.files.list())
|
||||
|
||||
def get_estimated_space_usage(folder_path):
|
||||
all_states = get_state(folder_path)
|
||||
return sum(s["size"] for s in all_states.values() if s["state"] == "processing")
|
||||
|
||||
def get_next_work_item(folder_path):
|
||||
all_states = get_state(folder_path)
|
||||
all_states = [s for s in all_states if s["state"] not in FINISHED_STATES]
|
||||
all_states.sort(key=lambda s: s["last_checked"])
|
||||
|
||||
return all_states[0] if len(all_states) > 0 else None
|
||||
|
||||
|
||||
|
||||
# Main function to process all .jsonl files in a folder
|
||||
def process_folder(folder_path: str, max_gb: int):
|
||||
output_folder = f"{folder_path}_done"
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
|
||||
starting_free_space = MAX_OPENAI_DISK_SPACE - get_total_space_usage()
|
||||
|
||||
if starting_free_space < max_gb * 2:
|
||||
raise ValueError(f"Insufficient free space in OpenAI's file storage: Only {starting_free_space} GB left, but 2x{max_gb} GB are required (1x for your uploads, 1x for your results).")
|
||||
|
||||
while not all(state["state"] in FINISHED_STATES for (file, state) in get_state(folder_path)):
|
||||
work_item = get_next_work_item(folder_path)
|
||||
print(f"Processing {os.path.basename(work_item['file'])}, cur status = {work_item['state']}")
|
||||
|
||||
# If all work items have been checked on, then you need to sleep a bit
|
||||
if work_item["last_checked"] > datetime.datetime.now() - datetime.timedelta(seconds=1):
|
||||
time.sleep(1)
|
||||
|
||||
if work_item["state"] == "init":
|
||||
if starting_free_space - get_estimated_space_usage(folder_path) > 0:
|
||||
try:
|
||||
batch_id = upload_and_start_batch(work_item["filename"])
|
||||
update_state(folder_path, work_item["filename"], state="processing", batch_id=batch_id)
|
||||
except:
|
||||
update_state(folder_path, work_item["filename"], state="init")
|
||||
else:
|
||||
print("waiting for something to finish processing before uploading more")
|
||||
elif work_item["state"] == "processing":
|
||||
batch_data = client.batches.retrieve(work_item["batch_id"])
|
||||
|
||||
if batch_data.status == "completed":
|
||||
batch_id, success = download_batch_result(work_item["batch_id"], output_folder)
|
||||
|
||||
if success:
|
||||
update_state(folder_path, work_item["filename"], state="completed")
|
||||
else:
|
||||
update_state(folder_path, work_item["filename"], state="errored_out")
|
||||
|
||||
client.files.delete(batch_data.input_file_id)
|
||||
client.files.delete(batch_data.output_file_id)
|
||||
elif batch_data.status in ["failed", "expired", "cancelled"]:
|
||||
update_state(folder_path, work_item["filename"], state="errored_out")
|
||||
|
||||
try:
|
||||
client.files.delete(batch_data.input_file_id)
|
||||
except:
|
||||
print("Could not delete old file data")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Set up argument parsing for folder input
|
||||
parser = argparse.ArgumentParser(description='Upload .jsonl files and process batches in OpenAI API.')
|
||||
parser.add_argument("--max_gb", type=int, default=25, help="Max number of GB of batch processing files to upload at one time")
|
||||
parser.add_argument('folder', type=str, help='Path to the folder containing .jsonl files')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Process the folder and start batches
|
||||
process_folder(args.folder, args.max_gb)
|
||||
Loading…
x
Reference in New Issue
Block a user