Readme improvements

This commit is contained in:
Jake Poznanski 2025-01-29 11:13:06 -08:00
parent dee494ad7b
commit f16acec296

View File

@ -5,19 +5,21 @@ Toolkit for training language models to work with PDF documents in the wild.
<img src="https://github.com/user-attachments/assets/d70c8644-3e64-4230-98c3-c52fddaeccb6" alt="olmOCR Logo" width="300"/>
View the online demo here: [https://olmocr.allen.ai/](https://olmocr.allen.ai/)
What is included:
- A prompting strategy to get really good natural text parsing using ChatGPT 4o - [buildsilver.py](https://github.com/allenai/olmocr/blob/main/olmocr/data/buildsilver.py)
- An eval toolkit for comparing different pipeline versions - [runeval.py](https://github.com/allenai/olmocr/blob/main/olmocr/eval/runeval.py)
- An side-by-side eval toolkit for comparing different pipeline versions - [runeval.py](https://github.com/allenai/olmocr/blob/main/olmocr/eval/runeval.py)
- Basic filtering by language and SEO spam removal - [filter.py](https://github.com/allenai/olmocr/blob/main/olmocr/filter/filter.py)
- Finetuning code for Qwen2-VL (and soon other VLMs) - [train.py](https://github.com/allenai/olmocr/blob/main/olmocr/train/train.py)
- Processing millions of PDFs through a finetuned model using Sglang - [beakerpipeline.py](https://github.com/allenai/olmocr/blob/main/olmocr/beakerpipeline.py)
- Finetuning code for Qwen2-VL and Molmo-O - [train.py](https://github.com/allenai/olmocr/blob/main/olmocr/train/train.py)
- Processing millions of PDFs through a finetuned model using Sglang - [pipeline.py](https://github.com/allenai/olmocr/blob/main/olmocr/pipeline.py)
- Viewing Dolma Docs created from PDFs - [dolmaviewer.py](https://github.com/allenai/olmocr/blob/main/olmocr/viewer/dolmaviewer.py)
### Installation
You will need to install poppler-utils and then also some fonts on your computer so that any pdfs you render come out looking nice.
Linux Ubuntu/Debian
```bash
sudo apt-get install poppler-utils ttf-mscorefonts-installer msttcorefonts fonts-crosextra-caladea fonts-crosextra-carlito gsfonts lcdf-typetools
```
@ -29,44 +31,73 @@ cd olmocr
pip install -e .
```
Finally, make sure you have sglang with flashinfer installed if you want to do efficient inference
```bash
pip install sgl-kernel --force-reinstall --no-deps
pip install "sglang[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.4/flashinfer/
```
### Beaker Usage
### Local Usage Example
If you want to linearize millions of PDFs efficiently using [beaker](https://www.beaker.org), follow these instructions.
This is the preferred method for best performance, and lets you get results quickly for iterating and debugging.
The easiest way to try out olmOCR on one or two PDFs is to check out the [web demo](https://olmocr.allen.ai/).
It also runs at 2,800+ tokens per second per H100 GPU.
Once you are ready to run locally, a local GPU is required, as inference is powered by [sglang](https://github.com/sgl-project/sglang)
under the hood.
This command will convert one PDF into a local workspace:
```bash
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/horribleocr.pdf
```
You can also bulk convert many PDFS with a glob pattern:
```bash
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/*.pdf
```
### Multi-node / Cluster Usage
If you want to convert millions of PDFs, using multiple nodes running in parallel, then olmOCR supports
reading your PDFs from AWS S3, and coordinating work using an AWS S3 output bucket.
For example, you can start this command on your first worker node, and it will set up
a simple work queue in your AWS bucket and start converting PDFs.
```bash
python -m olmocr.pipeline s3://my_s3_bucket/pdfworkspaces/exampleworkspace --pdfs s3://my_s3_bucket/jakep/gnarly_pdfs/*.pdf
```
Now on any subsequent nodes, just run this and they will start grabbing items from the same workspace queue.
```bash
python -m olmocr.pipeline s3://my_s3_bucket/pdfworkspaces/exampleworkspace
```
If you are at AI2 and want to linearize millions of PDFs efficiently using [beaker](https://www.beaker.org), just add the `--beaker`
flag. This will prepare the workspace on your local machine, and then launch N GPU workers in the cluster to start
converting PDFs.
For example:
```bash
python -m olmocr.beakerpipeline s3://ai2-oe-data/[your username]/pdfworkspaces/[workspacename] --pdfs s3://ai2-oe-data/jakep/gnarly_pdfs/*.pdf --beaker
python -m olmocr.pipeline s3://my_s3_bucket/pdfworkspaces/exampleworkspace --pdfs s3://my_s3_bucket/jakep/gnarly_pdfs/*.pdf --beaker --beaker_gpus 4
```
This will convert all the pdfs at `s3://ai2-oe-data/jakep/gnarly_pdfs/*.pdf` and output dolma formatted documents at `s3://ai2-oe-data/[your username]/pdfworkspaces/[workspacename]/results`
You can specify more GPUs with `--beaker_gpus [int]` to get through the work faster. You can also specify your workspace, and allowed beaker clusters to use.
With default settings, it should work fine on any available GPUs.
```bash
python -m olmocr.beakerpipeline --help
usage: beakerpipeline.py [-h] [--pdfs PDFS] [--workspace_profile WORKSPACE_PROFILE] [--pdf_profile PDF_PROFILE] [--pages_per_group PAGES_PER_GROUP]
[--max_page_retries MAX_PAGE_RETRIES] [--max_page_error_rate MAX_PAGE_ERROR_RATE] [--workers WORKERS] [--stats]
[--model MODEL] [--model_max_context MODEL_MAX_CONTEXT] [--model_chat_template MODEL_CHAT_TEMPLATE]
[--target_longest_image_dim TARGET_LONGEST_IMAGE_DIM] [--target_anchor_text_len TARGET_ANCHOR_TEXT_LEN] [--beaker]
[--beaker_workspace BEAKER_WORKSPACE] [--beaker_cluster BEAKER_CLUSTER] [--beaker_gpus BEAKER_GPUS]
[--beaker_priority BEAKER_PRIORITY]
workspace
python -m olmocr.pipeline --help
usage: pipeline.py [-h] [--pdfs PDFS] [--workspace_profile WORKSPACE_PROFILE] [--pdf_profile PDF_PROFILE] [--pages_per_group PAGES_PER_GROUP]
[--max_page_retries MAX_PAGE_RETRIES] [--max_page_error_rate MAX_PAGE_ERROR_RATE] [--workers WORKERS] [--apply_filter] [--stats] [--model MODEL]
[--model_max_context MODEL_MAX_CONTEXT] [--model_chat_template MODEL_CHAT_TEMPLATE] [--target_longest_image_dim TARGET_LONGEST_IMAGE_DIM]
[--target_anchor_text_len TARGET_ANCHOR_TEXT_LEN] [--beaker] [--beaker_workspace BEAKER_WORKSPACE] [--beaker_cluster BEAKER_CLUSTER]
[--beaker_gpus BEAKER_GPUS] [--beaker_priority BEAKER_PRIORITY]
workspace
Manager for running millions of PDFs through a batch inference pipeline
positional arguments:
workspace The S3 path where work will be done e.g., s3://bucket/prefix/
workspace The filesystem path where work will be stored, can be a local folder, or an s3 path if coordinating work with many workers, s3://bucket/prefix/
options:
-h, --help show this help message and exit
--pdfs PDFS Path to add pdfs stored in s3 to the workspace, can be a glob path s3://bucket/prefix/*.pdf or path to file containing list
of pdf paths
--pdfs PDFS Path to add pdfs stored in s3 to the workspace, can be a glob path s3://bucket/prefix/*.pdf or path to file containing list of pdf paths
--workspace_profile WORKSPACE_PROFILE
S3 configuration profile for accessing the workspace
--pdf_profile PDF_PROFILE
@ -78,9 +109,10 @@ options:
--max_page_error_rate MAX_PAGE_ERROR_RATE
Rate of allowable failed pages in a document, 1/250 by default
--workers WORKERS Number of workers to run at a time
--apply_filter Apply basic filtering to English pdfs which are not forms, and not likely seo spam
--stats Instead of running any job, reports some statistics about the current workspace
--model MODEL List of paths where you can find the model to convert this pdf. You can specify several different paths here, and the script
will try to use the one which is fastest to access
--model MODEL List of paths where you can find the model to convert this pdf. You can specify several different paths here, and the script will try to use the
one which is fastest to access
--model_max_context MODEL_MAX_CONTEXT
Maximum context length that the model was fine tuned under
--model_chat_template MODEL_CHAT_TEMPLATE