restored modeling_molmo.py file

This commit is contained in:
aman-17 2025-02-10 11:07:35 -08:00
parent 4bff92053b
commit f57c6f3f7b

View File

@ -1,3 +1,4 @@
# type: ignore
import logging
import math
from copy import deepcopy
@ -576,26 +577,24 @@ class Dropout(nn.Dropout):
@dataclass
class VisionBackboneConfig:
def __init__(self):
super().__init__()
self.image_default_input_size: Tuple[int, int] = (336, 336)
self.image_patch_size: int = 14
self.image_pos_patch_size: int = 14
self.image_emb_dim: int = 1024
self.image_num_heads: int = 16
self.image_num_key_value_heads: int = 16
self.image_num_layers: int = 24
self.image_head_dim: int = 64
self.image_mlp_dim: int = 4096
self.image_mlp_activations: str = "gelu"
self.image_dropout_rate: float = 0.0
self.image_num_pos: int = 577
self.image_norm_eps: float = 1e-5
self.attention_dropout: float = 0.0
self.residual_dropout: float = 0.0
self.initializer_range: float = 0.02
self.fsdp_wrap: bool = False
self.resize_mode: str = "default"
image_default_input_size: Tuple[int, int] = (336, 336)
image_patch_size: int = 14
image_pos_patch_size: int = 14
image_emb_dim: int = 1024
image_num_heads: int = 16
image_num_key_value_heads: int = 16
image_num_layers: int = 24
image_head_dim: int = 64
image_mlp_dim: int = 4096
image_mlp_activations: str = "gelu"
image_dropout_rate: float = 0.0
image_num_pos: int = 577
image_norm_eps: float = 1e-5
attention_dropout: float = 0.0
residual_dropout: float = 0.0
initializer_range: float = 0.02
fsdp_wrap: bool = False
resize_mode: str = "default"
def __post_init__(self):
self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
@ -608,61 +607,59 @@ class VisionBackboneConfig:
@dataclass
class FullMolmoConfig:
def __init__(self):
super().__init__()
self.d_model: int = 768
self.n_heads: int = 12
self.n_kv_heads: Optional[int] = None
self.qkv_bias: bool = False
self.clip_qkv: Optional[float] = None
self.n_layers: int = 12
self.mlp_ratio: int = 4
self.mlp_hidden_size: Optional[int] = None
self.activation_type: str = "swiglu"
self.block_group_size: int = 1
self.rope: bool = True
self.rope_full_precision: bool = True
self.rope_theta: float = 10000.0
self.rope_impl: str = "interleave"
self.vision_backbone: Optional[VisionBackboneConfig] = None
self.attention_type: str = "sdpa"
self.float32_attention: bool = True
self.attention_dropout: float = 0.1
self.response_attention_dropout: float = 0.0
self.multi_query_attention: Optional[bool] = None
self.attention_layer_norm: bool = False
self.residual_dropout: float = 0.1
self.embedding_dropout: float = 0.1
self.layer_norm_type: str = "default"
self.layer_norm_with_affine: bool = True
self.layer_norm_eps: Optional[float] = None
self.attention_layer_norm_with_affine: bool = True
self.max_sequence_length: int = 1024
self.max_position_embeddings: Optional[int] = None
self.include_bias: bool = True
self.bias_for_layer_norm: Optional[bool] = None
self.scale_logits: bool = False
self.vocab_size: int = 50257
self.embedding_size: Optional[int] = 50304
self.additional_vocab_size: Optional[int] = None
self.new_embedding_init_range: float = 0.02
self.weight_tying: bool = True
self.pad_token_id: int = -1
self.init_device: Optional[str] = None
self.init_std: float = 0.02
self.init_cutoff_factor: Optional[float] = None
self.norm_after: bool = False
self.precision: Optional[str] = None
self.image_padding_embed: Optional[str] = None
self.vit_layers: Tuple = (-1,)
self.image_pooling_h: int = 2
self.image_pooling_w: int = 2
self.image_pooling_2d: str = "attention"
self.image_projector: str = "mlp"
self.image_feature_dropout: float = 0.0
self.initializer_range: float = 0.02
self.normalize_input_embeds: bool = False
self.use_position_ids: bool = True
d_model: int = 768
n_heads: int = 12
n_kv_heads: Optional[int] = None
qkv_bias: bool = False
clip_qkv: Optional[float] = None
n_layers: int = 12
mlp_ratio: int = 4
mlp_hidden_size: Optional[int] = None
activation_type: str = "swiglu"
block_group_size: int = 1
rope: bool = True
rope_full_precision: bool = True
rope_theta: float = 10000.0
rope_impl: str = "interleave"
vision_backbone: Optional[VisionBackboneConfig] = None
attention_type: str = "sdpa"
float32_attention: bool = True
attention_dropout: float = 0.1
response_attention_dropout: float = 0.0
multi_query_attention: Optional[bool] = None
attention_layer_norm: bool = False
residual_dropout: float = 0.1
embedding_dropout: float = 0.1
layer_norm_type: str = "default"
layer_norm_with_affine: bool = True
layer_norm_eps: Optional[float] = None
attention_layer_norm_with_affine: bool = True
max_sequence_length: int = 1024
max_position_embeddings: Optional[int] = None
include_bias: bool = True
bias_for_layer_norm: Optional[bool] = None
scale_logits: bool = False
vocab_size: int = 50257
embedding_size: Optional[int] = 50304
additional_vocab_size: Optional[int] = None
new_embedding_init_range: float = 0.02
weight_tying: bool = True
pad_token_id: int = -1
init_device: Optional[str] = None
init_std: float = 0.02
init_cutoff_factor: Optional[float] = None
norm_after: bool = False
precision: Optional[str] = None
image_padding_embed: Optional[str] = None
vit_layers: Tuple = (-1,)
image_pooling_h: int = 2
image_pooling_w: int = 2
image_pooling_2d: str = "attention"
image_projector: str = "mlp"
image_feature_dropout: float = 0.0
initializer_range: float = 0.02
normalize_input_embeds: bool = False
use_position_ids: bool = True
@property
def effective_n_kv_heads(self) -> int:
@ -691,7 +688,7 @@ class FullMolmoConfig:
@property
def image_patch_size(self):
assert self.vision_backbone is not None
return self.vision_backbone.image_patch_size
return self.visoin_backbone.image_patch_size
def llm_patches_per_crop(self):
h, w = self.image_num_patch
@ -709,7 +706,7 @@ class ViTMLP(nn.Module):
def __init__(self, config: FullMolmoConfig):
super().__init__()
self.config = config
v_cfg = config.vision_backbone or VisionBackboneConfig()
v_cfg = config.vision_backbone
self.w1 = nn.Linear(
v_cfg.image_emb_dim,
@ -729,7 +726,7 @@ class ViTMLP(nn.Module):
)
def reset_parameters(self):
v_cfg = self.config.vision_backbone or VisionBackboneConfig()
v_cfg = self.config.vision_backbone
nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0)
nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0)
nn.init.zeros_(self.w1.bias)
@ -748,7 +745,7 @@ class ResidualAttentionBlock(nn.Module):
super().__init__()
self.config = config
v_cfg = config.vision_backbone or VisionBackboneConfig()
v_cfg = config.vision_backbone
self.attention = MultiHeadDotProductAttention(config)
self.feed_forward = ViTMLP(config)
self.attention_norm = nn.LayerNorm(
@ -781,7 +778,7 @@ class BlockCollection(nn.Module):
self.config = config
self.grad_checkpointing: bool = False
v_cfg = config.vision_backbone or VisionBackboneConfig()
v_cfg = config.vision_backbone
self.resblocks = nn.ModuleList([ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers)])
def reset_parameters(self):
@ -809,7 +806,7 @@ class VisionTransformer(nn.Module):
super().__init__()
self.config = config
v_cfg = config.vision_backbone or VisionBackboneConfig()
v_cfg = config.vision_backbone
# class embeddings and positional embeddings
self.scale = v_cfg.image_emb_dim**-0.5
self.class_embedding = nn.Parameter(
@ -852,15 +849,15 @@ class VisionTransformer(nn.Module):
pos_emb = pos_emb.reshape((int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]))
(patch_num_0, patch_num_1) = patch_num # type: ignore
(patch_num_0, patch_num_1) = patch_num
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1: # type: ignore
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
# antialias: default True in jax.image.resize
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
pos_emb = F.interpolate(
pos_emb,
size=(patch_num_0, patch_num_1), # type: ignore
size=(patch_num_0, patch_num_1),
mode="bicubic",
align_corners=False,
antialias=True,
@ -871,12 +868,12 @@ class VisionTransformer(nn.Module):
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
return x
def forward(self, x: torch.Tensor, patch_num: Optional[int] = None) -> List[torch.Tensor]:
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
"""
: param x: (batch_size, num_patch, n_pixels)
"""
if patch_num is None:
patch_num = self.config.vision_backbone.image_num_patch # type: ignore
patch_num = self.config.vision_backbone.image_num_patch
B, N, D = x.shape
x = self.patch_embedding(x)
@ -897,7 +894,7 @@ class MultiHeadDotProductAttention(nn.Module):
self.config = config
self.use_bias = use_bias
v_cfg = config.vision_backbone or VisionBackboneConfig()
v_cfg = config.vision_backbone
self.embed_dim = v_cfg.image_emb_dim
self.num_heads = v_cfg.image_num_heads
self.head_dim = v_cfg.image_head_dim
@ -989,12 +986,12 @@ class MultiHeadDotProductAttention(nn.Module):
elif self.config.attention_type == "sdpa":
if self.config.float32_attention and not torch.is_autocast_enabled():
xv = xv.to(torch.float32)
attn_output = F.scaled_dot_product_attention( # type: ignore
attn_output = F.scaled_dot_product_attention(
xq.transpose(1, 2).contiguous(),
xk.transpose(1, 2).contiguous(),
xv.transpose(1, 2).contiguous(),
is_causal=False,
dropout_p=self.config.vision_backbone.attention_dropout, # type: ignore
dropout_p=self.config.vision_backbone.attention_dropout,
).transpose(1, 2)
else:
raise NotImplementedError(self.config.attention_type)
@ -1027,7 +1024,7 @@ class MultiHeadAttentionPool(nn.Module):
self.mean_residual = mean_residual
self.query = query
v_cfg = config.vision_backbone or VisionBackboneConfig()
v_cfg = config.vision_backbone
input_dim = v_cfg.image_emb_dim
self.embed_dim = v_cfg.image_emb_dim * factor
self.num_heads = v_cfg.image_num_heads
@ -1206,17 +1203,18 @@ class OLMoVisionBackbone(nn.Module):
super().__init__()
self.config = config
self.image_vit = VisionTransformer(config)
input_dim: Optional[int] = None
input_dim: int = None
self.image_pooling_2d: nn.Module = None
if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}:
self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
input_dim = config.vision_backbone.image_emb_dim # type: ignore
input_dim = config.vision_backbone.image_emb_dim
elif config.image_pooling_2d == ImagePooling2DType.attention_2wide:
cfg = deepcopy(config)
cfg.vision_backbone.image_emb_dim *= 2 # type: ignore
cfg.vision_backbone.image_head_dim *= 2 # type: ignore
cfg.vision_backbone.image_emb_dim *= 2
cfg.vision_backbone.image_head_dim *= 2
self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False)
input_dim = cfg.vision_backbone.image_emb_dim # type: ignore
input_dim = cfg.vision_backbone.image_emb_dim
elif config.image_pooling_2d == ImagePooling2DType.attention_v2:
assert config.vit_layers is not None
use_bias = True
@ -1235,11 +1233,11 @@ class OLMoVisionBackbone(nn.Module):
query=query,
is_vit_layer=False,
)
input_dim = config.vision_backbone.image_emb_dim * factor # type: ignore
input_dim = config.vision_backbone.image_emb_dim * factor
elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]:
self.image_pooling_2d = None
nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
input_dim = nlayers * config.vision_backbone.image_emb_dim # type: ignore
input_dim = nlayers * config.vision_backbone.image_emb_dim
else:
raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}")
@ -1247,9 +1245,9 @@ class OLMoVisionBackbone(nn.Module):
# `MLP` assume the activation takes two inputs, so it must be a 'llama' version
if config.activation_type == ActivationType.swiglu:
mlp_config = replace(config, activation_type=ActivationType.llama_swiglu) # type: ignore
mlp_config = replace(config, activation_type=ActivationType.llama_swiglu)
elif config.activation_type == ActivationType.gelu:
mlp_config = replace(config, activation_type=ActivationType.llama_geglu) # type: ignore
mlp_config = replace(config, activation_type=ActivationType.llama_geglu)
else:
mlp_config = config
if config.image_projector == ImageProjectType.mlpx2:
@ -1294,7 +1292,7 @@ class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
self.pad_embed = None
if config.image_padding_embed:
image_dim = v_cfg.image_emb_dim * len(self.config.vit_layers) # type: ignore
image_dim = v_cfg.image_emb_dim * len(self.config.vit_layers)
if config.image_padding_embed in ["pad_embed", "regress"]:
self.pad_embed = nn.Parameter(torch.zeros((image_dim,), device=config.init_device))
elif config.image_padding_embed == "pad_and_partial_pad":
@ -1352,13 +1350,13 @@ class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
assert image_masks is not None
if cfg.image_padding_embed == "pad_embed":
all_pad = (image_masks == 0).to(dtype=torch.float32)
pad_embed = self.pad_embed[None, None, None, :] # type: ignore
pad_embed = self.pad_embed[None, None, None, :]
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
elif cfg.image_padding_embed == "regress":
pad_embed = self.pad_embed[None, None, None, :] # type: ignore
pad_embed = self.pad_embed[None, None, None, :]
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1)
elif cfg.image_padding_embed == "pad_and_partial_pad":
pad_embed = self.pad_embed[:, None, None, None, :] # type: ignore
pad_embed = self.pad_embed[:, None, None, None, :]
all_pad = image_masks == 0
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=image_features.dtype)
all_pad = all_pad.to(dtype=image_features.dtype)
@ -1560,12 +1558,12 @@ class LayerNormBase(nn.Module):
self.eps = self.config.layer_norm_eps or eps
self.normalized_shape = (size or config.d_model,)
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device)) # type: ignore
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device))
use_bias = self.config.bias_for_layer_norm
if use_bias is None:
use_bias = self.config.include_bias
if use_bias:
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device)) # type: ignore
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device))
else:
self.register_parameter("bias", None)
else:
@ -1596,7 +1594,7 @@ class RMSLayerNorm(LayerNormBase):
elementwise_affine: Optional[bool] = None,
eps: float = 1e-5,
):
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) # type: ignore
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.autocast(enabled=False, device_type=x.device.type):
@ -1628,7 +1626,7 @@ class LayerNorm(LayerNormBase):
elementwise_affine: Optional[bool] = None,
eps: float = 1e-05,
):
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) # type: ignore
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
self.low_precision = low_precision
def forward(self, x: torch.Tensor) -> torch.Tensor:
@ -1666,7 +1664,7 @@ class Molmo(nn.Module):
if self.config.additional_vocab_size is not None:
wte = Embedding(
config.embedding_size or config.vocab_size,
config.additional_vocab_size, # type: ignore
config.additional_vocab_size,
config.d_model,
device=config.init_device,
initializer_range=config.initializer_range,
@ -1683,7 +1681,7 @@ class Molmo(nn.Module):
)
)
blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)] # type: ignore
blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
if self.config.block_group_size > 1:
raise NotImplementedError()
else:
@ -1807,14 +1805,14 @@ class Molmo(nn.Module):
if self.config.use_position_ids and attention_mask is None:
attention_mask = input_ids != -1
if subsegment_ids is not None and attention_mask is not None:
if subsegment_ids is not None:
assert not use_cache, "Subsegment_ids cannot be used with cache."
subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1)
attention_mask = subsegment_mask.to(attention_mask.dtype) * attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)
if position_ids is None:
raise ValueError("Positioned ids must be given if using subsegment_ids")
else:
if self.config.use_position_ids and position_ids is None and attention_mask is not None:
if self.config.use_position_ids and position_ids is None:
position_ids = torch.clamp(
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
min=0,
@ -1827,10 +1825,10 @@ class Molmo(nn.Module):
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
num_image: Optional[int] = None
if images is not None and image_input_idx is not None:
if images is not None:
# shape: (batch_size, num_image, num_patch, d_model)
# cls_embed: (batch_size, num_image, d_model)
image_features, cls_embed = self.vision_backbone(images, image_masks) # type: ignore
image_features, cls_embed = self.vision_backbone(images, image_masks)
num_image, num_patch = image_features.shape[1:3]
assert image_input_idx.shape == (batch_size, num_image, num_patch)
@ -2011,8 +2009,8 @@ class MolmoForCausalLM(PreTrainedModel):
rope_theta=config.rope_theta,
layer_norm_eps=config.layer_norm_eps,
layer_norm_type=config.layer_norm_type,
vit_layers=[-2, -9], # type: ignore
vision_backbone=VisionBackboneConfig( # type: ignore
vit_layers=[-2, -9],
vision_backbone=VisionBackboneConfig(
image_default_input_size=(336, 336),
image_patch_size=14,
image_pos_patch_size=14,
@ -2056,7 +2054,7 @@ class MolmoForCausalLM(PreTrainedModel):
output_hidden_states: Optional[bool] = None,
append_last_valid_logits: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[ # type: ignore
cache_position: Optional[
Cache
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
) -> Union[Tuple, CausalLMOutputWithPast]:
@ -2082,7 +2080,7 @@ class MolmoForCausalLM(PreTrainedModel):
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
last_logits_only=last_logits_only, # type: ignore
last_logits_only=last_logits_only,
output_hidden_states=output_hidden_states,
append_last_valid_logits=append_last_valid_logits,
)
@ -2156,7 +2154,7 @@ class MolmoForCausalLM(PreTrainedModel):
input_ids = batch["input_ids"]
batch_size, seq_len = input_ids.shape
attention_mask = batch.get("attention_mask", None)
max_new_tokens = generation_config.max_new_tokens # type: ignore
max_new_tokens = generation_config.max_new_tokens
assert max_new_tokens is not None
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len
position_ids: Optional[torch.Tensor] = None