# The idea is that you have a Qwen2-VL-7B model located here:s3://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/" # You need to load it in both hugging face transformers, and send page 1 of edgar.pdf to it from tests/gnarly_pdfs # Compare that the temperature 0 sampled result is the same import asyncio import base64 import json import math import os import tempfile import unittest from io import BytesIO from pathlib import Path from unittest.mock import AsyncMock, patch import numpy as np import torch import torch.nn.functional as F from httpx import AsyncClient from PIL import Image from transformers import AutoProcessor, AutoTokenizer, Qwen2VLForConditionalGeneration from olmocr.pipeline import ( SGLANG_SERVER_PORT, build_page_query, get_anchor_text, render_pdf_to_base64png, sglang_server_ready, sglang_server_task, ) from olmocr.prompts import PageResponse MODEL_FINETUNED_PATH = ( "s3://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/" ) @unittest.skip("Skip these tests when running CI, they are mostly for experimentation") class TestSglangServer(unittest.IsolatedAsyncioTestCase): async def asyncSetUp(self): # Mock arguments self.args = AsyncMock() self.args.workspace = "/tmp/test_workspace" self.args.model = [MODEL_FINETUNED_PATH] self.args.model_chat_template = "qwen2-vl" self.args.target_longest_image_dim = 1024 self.args.target_anchor_text_len = 6000 self.args.model_max_context = 8192 # Create a temporary workspace directory os.makedirs(self.args.workspace, exist_ok=True) # Set up a semaphore for server tasks self.semaphore = asyncio.Semaphore(1) self.maxDiff = None # # Start the sglang server # self.my_server_task = asyncio.create_task(sglang_server_task(self.args, self.semaphore)) # # Wait for the server to become ready # await sglang_server_ready() async def test_sglang_server_initialization_and_request(self): # Mock data paths self.test_pdf_path = Path(os.path.join(os.path.dirname(__file__), "gnarly_pdfs", "ambiguous.pdf")) # Send a single request to the sglang server for page 1 async with AsyncClient(timeout=600) as session: query = await build_page_query( str(self.test_pdf_path), page=1, target_longest_image_dim=self.args.target_longest_image_dim, target_anchor_text_len=self.args.target_anchor_text_len, ) COMPLETION_URL = f"http://localhost:{30000}/v1/chat/completions" query["temperature"] = 0.0 query["logprobs"] = True query["top_logprobs"] = 5 response = await session.post(COMPLETION_URL, json=query) print(response.text) # Check the server response self.assertEqual(response.status_code, 200) response_data = response.json() self.assertIn("choices", response_data) self.assertGreater(len(response_data["choices"]), 0) model_response_json = json.loads(response_data["choices"][0]["message"]["content"]) page_response = PageResponse(**model_response_json) print(page_response) self.assertEqual(page_response.natural_text, EDGAR_TEXT) async def asyncTearDown(self): pass # # Shut down the server # self.my_server_task.cancel() # with self.assertRaises(asyncio.CancelledError): # await self.my_server_task # # Cleanup temporary workspace # if os.path.exists(self.args.workspace): # for root, _, files in os.walk(self.args.workspace): # for file in files: # os.unlink(os.path.join(root, file)) # os.rmdir(self.args.workspace) class TestHuggingFaceModel(unittest.IsolatedAsyncioTestCase): async def asyncSetUp(self): # Set up the Hugging Face model and tokenizer model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "olmocr", "model") download_directory([MODEL_FINETUNED_PATH], model_cache_dir) # Check the rope config and make sure it's got the proper key with open(os.path.join(model_cache_dir, "config.json"), "r") as cfin: config_data = json.load(cfin) if "rope_type" in config_data["rope_scaling"]: del config_data["rope_scaling"]["rope_type"] config_data["rope_scaling"]["type"] = "mrope" with open(os.path.join(model_cache_dir, "config.json"), "w") as cfout: json.dump(config_data, cfout) self.tokenizer = AutoTokenizer.from_pretrained(model_cache_dir, trust_remote_code=True) self.image_token_id = self.tokenizer.encode("<|image_pad|>")[0] self.model = Qwen2VLForConditionalGeneration.from_pretrained(model_cache_dir, torch_dtype=torch.bfloat16, trust_remote_code=True).eval() self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(self.device) # Path to the test PDF self.test_pdf_path = Path(os.path.join(os.path.dirname(__file__), "gnarly_pdfs", "ambiguous.pdf")) self.maxDiff = None async def test_hugging_face_generation(self): query = await build_page_query( str(self.test_pdf_path), page=1, target_longest_image_dim=1024, target_anchor_text_len=6000, ) messages = query["messages"] # Apply chat template to get the text text = self.processor.apply_chat_template(query["messages"], tokenize=False, add_generation_prompt=True) image_url = query["messages"][0]["content"][1]["image_url"]["url"] # Remove the "data:image/png;base64," prefix base64_image = image_url.split(",")[1] # Decode the base64 string into bytes image_data = base64.b64decode(base64_image) # Create a BytesIO object and load it into a PIL image main_image = Image.open(BytesIO(image_data)) # Process inputs using processor inputs = self.processor( text=[text], images=[main_image], padding=True, return_tensors="pt", ) image_indices = [idx for idx, token in enumerate(inputs["input_ids"][0]) if token.item() == self.image_token_id] print("IMAGE INDICES", image_indices) print(f"image_grid_thw - {inputs['image_grid_thw'].shape} {inputs['image_grid_thw']}") print(f"pixel_values - {inputs['pixel_values'].shape} {inputs['pixel_values'].detach().cpu().numpy()}") np.save("/root/pixel_values.npy", inputs["pixel_values"].detach().cpu().numpy()) inputs = {key: value.to(self.device) for (key, value) in inputs.items()} generated_tokens = [] max_steps = 50 top_logprobs_hf = [] for step in range(max_steps): # Generate the output with temperature=0 generation_output = self.model.generate( **inputs, temperature=0.0, max_new_tokens=1, # max_length=8192, num_return_sequences=1, do_sample=False, output_scores=True, return_dict_in_generate=True, ) # Extract the generated token's log probabilities scores = generation_output.scores # Tuple of length 1 logits = scores[0] # Tensor of shape (batch_size, vocab_size) log_probs = F.log_softmax(logits, dim=-1) # Apply log softmax to get log probabilities # Get top 5 tokens and their log probabilities topk_log_probs, topk_indices = torch.topk(log_probs[0], k=5) topk_tokens = self.tokenizer.convert_ids_to_tokens(topk_indices.tolist()) top_logprobs_hf.append((topk_tokens, topk_log_probs.tolist())) # Pick the top token next_token_id = topk_indices[0].unsqueeze(0).unsqueeze(0) # Shape: (1, 1) next_token_str = self.tokenizer.convert_ids_to_tokens([next_token_id.item()])[0] generated_tokens.append(next_token_id.item()) # Append the next token to input_ids and update attention_mask inputs["input_ids"] = torch.cat([inputs["input_ids"], next_token_id], dim=-1) inputs["attention_mask"] = torch.cat([inputs["attention_mask"], torch.ones((1, 1), dtype=inputs["attention_mask"].dtype).to(self.device)], dim=-1) print(self.tokenizer.decode(generated_tokens)) # Now take all the input ids and run them through sglang as a comparison async with AsyncClient(timeout=600) as session: query["temperature"] = 0.0 query["max_tokens"] = max_steps query["logprobs"] = True query["top_logprobs"] = 5 COMPLETION_URL = f"http://localhost:{30000}/v1/chat/completions" response = await session.post(COMPLETION_URL, json=query) response_data = response.json() for step, lptok in enumerate(response_data["choices"][0]["logprobs"]["content"]): print("\nTop 5 tokens and their log probabilities:") (topk_tokens, topk_log_probs) = top_logprobs_hf[step] for token, log_prob, lptokcur in zip(topk_tokens, topk_log_probs, lptok["top_logprobs"]): print( f"HF Token: {token} Log Prob: {log_prob:.2f} Prob {math.exp(log_prob)*100:.2f}% SGLANG Token {lptokcur['token']} Logprob {lptokcur['logprob']:.2f} Prob {math.exp(lptokcur['logprob'])*100:.2f}%" ) async def asyncTearDown(self): # Clean up the model and tokenizer del self.model del self.tokenizer torch.cuda.empty_cache() class RawSGLangTest(unittest.IsolatedAsyncioTestCase): def setUp(self): # Set up the Hugging Face model and tokenizer model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "olmocr", "model") download_directory([MODEL_FINETUNED_PATH], model_cache_dir) # Check the rope config and make sure it's got the proper key with open(os.path.join(model_cache_dir, "config.json"), "r") as cfin: config_data = json.load(cfin) if "rope_type" in config_data["rope_scaling"]: del config_data["rope_scaling"]["rope_type"] config_data["rope_scaling"]["type"] = "mrope" with open(os.path.join(model_cache_dir, "config.json"), "w") as cfout: json.dump(config_data, cfout) self.model_cache_dir = model_cache_dir self.tokenizer = AutoTokenizer.from_pretrained(model_cache_dir, trust_remote_code=True) self.image_token_id = self.tokenizer.encode("<|image_pad|>")[0] self.model = Qwen2VLForConditionalGeneration.from_pretrained(model_cache_dir, torch_dtype=torch.bfloat16, trust_remote_code=True).eval() self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(self.device) # Path to the test PDF self.test_pdf_path = Path(os.path.join(os.path.dirname(__file__), "gnarly_pdfs", "ambiguous.pdf")) self.maxDiff = None async def test_vision_encoder(self): query = await build_page_query( str(self.test_pdf_path), page=1, target_longest_image_dim=1024, target_anchor_text_len=6000, ) messages = query["messages"] # Apply chat template to get the text text = self.processor.apply_chat_template(query["messages"], tokenize=False, add_generation_prompt=True) image_url = query["messages"][0]["content"][1]["image_url"]["url"] # Remove the "data:image/png;base64," prefix base64_image = image_url.split(",")[1] # Decode the base64 string into bytes image_data = base64.b64decode(base64_image) # Create a BytesIO object and load it into a PIL image main_image = Image.open(BytesIO(image_data)) # Process inputs using processor inputs = self.processor( text=[text], images=[main_image], padding=True, return_tensors="pt", ) with torch.no_grad(): hf_output = self.model.visual(inputs["pixel_values"].to(self.device), grid_thw=inputs["image_grid_thw"].to(self.device)) print("HF", hf_output, hf_output.shape) from sglang.srt.configs.model_config import ModelConfig from sglang.srt.hf_transformers_utils import get_tokenizer from sglang.srt.managers.schedule_batch import Req, ScheduleBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.model_runner import ModelRunner from sglang.srt.sampling.sampling_params import SamplingParams from sglang.srt.server_args import PortArgs, ServerArgs model_config = ModelConfig(self.model_cache_dir, model_override_args="{}") server_args = ServerArgs(model_path=self.model_cache_dir) # Initialize model runner model_runner = ModelRunner( model_config=model_config, mem_fraction_static=0.8, gpu_id=0, tp_rank=0, tp_size=1, nccl_port=12435, server_args=server_args, ) print(model_runner) with torch.no_grad(): sglang_output = model_runner.model.visual(inputs["pixel_values"].to(self.device), grid_thw=inputs["image_grid_thw"].to(self.device)) print("SGLANG", sglang_output, sglang_output.shape) # Convert to float32 for numerical stability if needed hf = hf_output.float() sg = sglang_output.float() # Basic shape and dtype comparison print("\n=== Basic Properties ===") print(f"Shapes match: {hf.shape == sg.shape}") print(f"HF shape: {hf.shape}, SGLang shape: {sg.shape}") print(f"HF dtype: {hf.dtype}, SGLang dtype: {sg.dtype}") # Move tensors to CPU for numpy operations hf_np = hf.cpu().numpy() sg_np = sg.cpu().numpy() # Statistical metrics print("\n=== Statistical Metrics ===") print(f"Mean absolute difference: {torch.mean(torch.abs(hf - sg)).item():.6f}") print(f"Max absolute difference: {torch.max(torch.abs(hf - sg)).item():.6f}") print(f"Mean squared error: {torch.mean((hf - sg) ** 2).item():.6f}") print(f"Root mean squared error: {torch.sqrt(torch.mean((hf - sg) ** 2)).item():.6f}") # Cosine similarity (across feature dimension) cos_sim = F.cosine_similarity(hf, sg) print(f"Mean cosine similarity: {torch.mean(cos_sim).item():.6f}") print(f"Min cosine similarity: {torch.min(cos_sim).item():.6f}") # Find largest absolute differences print("\n=== Largest Absolute Differences ===") diffs = torch.abs(hf - sg) flat_diffs = diffs.flatten() # Get indices of top 10 differences top_k = 10 top_values, top_flat_indices = torch.topk(flat_diffs, top_k) # Convert flat indices to multidimensional indices top_indices = np.unravel_index(top_flat_indices.cpu().numpy(), diffs.shape) print(f"\nTop {top_k} largest absolute differences:") print("Index".ljust(30) + "Difference".ljust(15) + "HF Value".ljust(15) + "SGLang Value") print("-" * 75) for i in range(top_k): # Get the index tuple for this difference idx = tuple(dim[i] for dim in top_indices) diff_val = top_values[i].item() hf_val = hf[idx].item() sg_val = sg[idx].item() # Format the index tuple and values idx_str = str(idx) print(f"{idx_str:<30}{diff_val:<15.6f}{hf_val:<15.6f}{sg_val:.6f}")