#!/usr/bin/env python3 """ Compare PII Detection Rules and Calculate IoU This script processes documents and their attributes from S3 or local storage, applies different rules for PII detection, and calculates the Intersection over Union (IoU) to measure how well they overlap. How it works: 1. Documents are stored in one location (--docs-folder) 2. Attributes are automatically found in ../attributes/ relative to the documents folder 3. The script merges documents with all available attributes by matching filenames and document IDs 4. PII detection rules are applied to the merged documents 5. IoU and other metrics are calculated to compare the results Expected folder structure: - s3://bucket/path/documents/ - Contains the main document JSONL files - s3://bucket/path/attributes/ - Contains attributes that can be matched with documents by ID Document and attribute matching: - Files are matched by basename (example.jsonl in documents matches example.jsonl in attributes) - Within each file, documents are matched by their "id" field - When a match is found, attributes from the attribute file are merged into the document Example usage: python pii_rule_comparison.py \ --docs-folder s3://bucket/path/documents \ --ref-rule "gpt_4_1_contains_pii:any" \ --hyp-rule "gpt_4_1_contains_email_addresses:any" \ --output-file iou_results.json \ --recursive Rule expression syntax: - Simple rule: "attribute_name:rule_type" where rule_type is "any" or "all" - Boolean expressions: "not rule1:any and rule2:all" - Parentheses for grouping: "(rule1:any or rule2:any) and not rule3:all" """ import argparse import base64 import gzip import html as pyhtml import io import json import logging import os from collections import defaultdict from enum import Enum, auto from io import BytesIO from pathlib import Path import boto3 import numpy as np import zstandard as zstd from matplotlib.figure import Figure # Initialize logger logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) # Define token types for the rule expression parser class TokenType(Enum): RULE = auto() AND = auto() OR = auto() NOT = auto() LPAREN = auto() RPAREN = auto() EOF = auto() class Token: """Token for rule expression parsing""" def __init__(self, type, value=None): self.type = type self.value = value def __repr__(self): if self.value: return f"Token({self.type}, {self.value})" return f"Token({self.type})" class ExpressionNode: """Base class for expression tree nodes""" pass class RuleNode(ExpressionNode): """Leaf node representing a single rule""" def __init__(self, attribute_name, rule_type): self.attribute_name = attribute_name self.rule_type = rule_type def __repr__(self): return f"Rule({self.attribute_name}:{self.rule_type})" class NotNode(ExpressionNode): """Unary NOT operation node""" def __init__(self, operand): self.operand = operand def __repr__(self): return f"NOT({self.operand})" class BinaryNode(ExpressionNode): """Binary operation (AND/OR) node""" def __init__(self, left, right, operator): self.left = left self.right = right self.operator = operator def __repr__(self): return f"{self.operator}({self.left}, {self.right})" def parse_args(): parser = argparse.ArgumentParser(description="Compare PII detection rules and calculate IoU") parser.add_argument("--docs-folder", required=True, help="Documents folder path containing JSONL files (local or s3://)") parser.add_argument("--attr-folder", help="Attributes folder path (if different from standard ../attributes/ location)") parser.add_argument( "--ref-rule", required=True, help="""Reference rule expression. Can be a simple rule in format 'attribute_name:rule_type', where rule_type is 'any' or 'all'. Or a boolean expression like 'not rule1:any and rule2:all' or '(rule1:any or rule2:any) and not rule3:all'""", ) parser.add_argument( "--hyp-rule", required=True, help="""Hypothesis rule expression. Can be a simple rule in format 'attribute_name:rule_type', where rule_type is 'any' or 'all'. Or a boolean expression like 'not rule1:any and rule2:all' or '(rule1:any or rule2:any) and not rule3:all'""", ) parser.add_argument("--output-dir", default="results", help="Directory to save HTML result files") parser.add_argument("--aws-profile", help="AWS profile for S3 access") parser.add_argument("--recursive", action="store_true", help="Recursively process folder structure") parser.add_argument("--debug", action="store_true", help="Enable debug logging for more detailed output") parser.add_argument("--disable-plots", action="store_true", help="Disable CDF plots generation") parser.add_argument("--max-plots", type=int, default=200, help="Maximum number of CDF plots to generate (default: 200)") return parser.parse_args() def parse_s3_path(s3_path): """Parse S3 path into bucket and prefix.""" parts = s3_path.replace("s3://", "").split("/", 1) bucket = parts[0] prefix = parts[1] if len(parts) > 1 else "" return bucket, prefix def get_attributes_folder(docs_folder, attr_folder=None): """ Determine the attributes folder path based on the documents folder. Args: docs_folder: Path to the documents folder attr_folder: Manually specified attributes folder (optional) Returns: Path to the attributes folder """ if attr_folder: return attr_folder # If no attributes folder specified, derive it from the documents folder if docs_folder.startswith("s3://"): # For S3 paths bucket, prefix = parse_s3_path(docs_folder) # Remove trailing slashes for consistent path handling prefix = prefix.rstrip("/") # Check if the documents folder is in a 'documents' directory if prefix.endswith("/documents"): # Replace /documents with /attributes attr_prefix = prefix[: -len("/documents")] + "/attributes" else: # Otherwise, add a parent level and include 'attributes' path_parts = prefix.split("/") # Remove the last part (assumed to be the documents directory name) path_parts.pop() # Add 'attributes' path_parts.append("attributes") attr_prefix = "/".join(path_parts) return f"s3://{bucket}/{attr_prefix}" else: # For local paths docs_path = Path(docs_folder) # Check if the documents folder is in a 'documents' directory if docs_path.name == "documents": # Replace /documents with /attributes attr_path = docs_path.parent / "attributes" else: # Otherwise, add a parent level and include 'attributes' attr_path = docs_path.parent / "attributes" return str(attr_path) def get_s3_bytes(s3_client, s3_path): """Get bytes from S3 object.""" bucket, key = parse_s3_path(s3_path) response = s3_client.get_object(Bucket=bucket, Key=key) return response["Body"].read() def list_jsonl_files(path, s3_client=None, recursive=False): """List all JSONL files in the given path, locally or in S3.""" jsonl_files = [] if path.startswith("s3://"): bucket, prefix = parse_s3_path(path) prefix = prefix.rstrip("/") + "/" # List objects in S3 bucket with given prefix paginator = s3_client.get_paginator("list_objects_v2") for page in paginator.paginate(Bucket=bucket, Prefix=prefix): if "Contents" in page: for obj in page["Contents"]: key = obj["Key"] if ( key.endswith(".jsonl") or key.endswith(".json") or key.endswith(".jsonl.gz") or key.endswith(".jsonl.zst") or key.endswith(".jsonl.ztd") or key.endswith(".jsonl.zstd") ): jsonl_files.append(f"s3://{bucket}/{key}") else: # Local file system path_obj = Path(path) if recursive: for file_path in path_obj.rglob("*"): if ( file_path.name.endswith(".jsonl") or file_path.name.endswith(".json") or file_path.name.endswith(".jsonl.gz") or file_path.name.endswith(".jsonl.zst") or file_path.name.endswith(".jsonl.ztd") or file_path.name.endswith(".jsonl.zstd") ): jsonl_files.append(str(file_path)) else: for file_path in path_obj.glob("*"): if ( file_path.name.endswith(".jsonl") or file_path.name.endswith(".json") or file_path.name.endswith(".jsonl.gz") or file_path.name.endswith(".jsonl.zst") or file_path.name.endswith(".jsonl.ztd") or file_path.name.endswith(".jsonl.zstd") ): jsonl_files.append(str(file_path)) return jsonl_files def load_jsonl_file(file_path, s3_client=None): """Load and decompress a JSONL file, either from local or S3.""" try: # Get file content if file_path.startswith("s3://"): if s3_client is None: raise ValueError("S3 client is required for S3 paths") raw_data = get_s3_bytes(s3_client, file_path) else: with open(file_path, "rb") as f: raw_data = f.read() # Decompress if needed if file_path.endswith(".gz"): decompressed = gzip.decompress(raw_data) elif file_path.endswith((".zst", ".ztd", ".zstd")): try: # First try with standard decompression dctx = zstd.ZstdDecompressor() decompressed = dctx.decompress(raw_data) except zstd.ZstdError as e: # If that fails, try with stream decompression logger.warning(f"Standard zstd decompression failed for {file_path}, trying stream decompression: {e}") try: # Try with content-size not required dctx = zstd.ZstdDecompressor(max_window_size=2147483648) # Use a large window size decompressor = dctx.stream_reader(io.BytesIO(raw_data)) decompressed = decompressor.read() except Exception as inner_e: # If both methods fail, try with chunking logger.warning(f"Stream decompression also failed, trying chunked reading: {inner_e}") # Chunked reading approach buffer = io.BytesIO() dctx = zstd.ZstdDecompressor(max_window_size=2147483648) with dctx.stream_reader(io.BytesIO(raw_data)) as reader: while True: chunk = reader.read(16384) # Read in 16KB chunks if not chunk: break buffer.write(chunk) buffer.seek(0) decompressed = buffer.read() else: decompressed = raw_data # Parse JSON lines lines = decompressed.decode("utf-8").strip().split("\n") return [json.loads(line) for line in lines if line.strip()] except Exception as e: logger.error(f"Error loading file {file_path}: {e}") return [] def load_documents_and_attributes(docs_folder, attr_folder, s3_client=None, recursive=False): """ Load documents and merge them with their attributes from all subdirectories. Args: docs_folder: Path to the documents folder attr_folder: Path to the attributes folder s3_client: S3 client for S3 paths recursive: Whether to process folders recursively Returns: List of documents with their attributes merged in """ try: # List all document files logger.info(f"Finding document files in: {docs_folder}") doc_files = list_jsonl_files(docs_folder, s3_client, recursive) logger.info(f"Found {len(doc_files)} document files") if not doc_files: logger.warning(f"No document files found in {docs_folder}. Check the path and permissions.") return [] # Get all attribute subdirectories if it's an S3 path attr_subdirs = [] if attr_folder.startswith("s3://"): bucket, attr_prefix = parse_s3_path(attr_folder) attr_prefix = attr_prefix.rstrip("/") + "/" # List top-level directories in the attributes folder logger.info(f"Finding attribute subdirectories in: {attr_folder}") # Using delimiter parameter to list "directories" in S3 paginator = s3_client.get_paginator("list_objects_v2") for page in paginator.paginate(Bucket=bucket, Prefix=attr_prefix, Delimiter="/"): if "CommonPrefixes" in page: for prefix in page["CommonPrefixes"]: subdir = f"s3://{bucket}/{prefix['Prefix']}" attr_subdirs.append(subdir) logger.info(f"Found attribute subdirectory: {subdir}") # If no subdirectories, use the main folder if not attr_subdirs: attr_subdirs = [attr_folder] logger.info(f"No subdirectories found, using main attribute folder: {attr_folder}") else: # For local paths attr_path = Path(attr_folder) if attr_path.exists() and attr_path.is_dir(): # Get subdirectories subdirs = [str(d) for d in attr_path.iterdir() if d.is_dir()] if subdirs: attr_subdirs = subdirs logger.info(f"Found {len(attr_subdirs)} attribute subdirectories") else: attr_subdirs = [attr_folder] logger.info(f"No subdirectories found, using main attribute folder: {attr_folder}") else: logger.warning(f"Attributes folder not found or not a directory: {attr_folder}") attr_subdirs = [] # Load and merge documents with all attributes from all subdirectories merged_docs = [] docs_by_id = {} total_attr_files = 0 # First, load all document files and create a document-by-ID mapping for doc_path in doc_files: try: if doc_path.startswith("s3://"): _, doc_key = parse_s3_path(doc_path) basename = os.path.basename(doc_key) else: basename = os.path.basename(doc_path) # Load documents docs = load_jsonl_file(doc_path, s3_client) if not docs: logger.warning(f"No documents loaded from {basename} (path: {doc_path})") continue logger.info(f"Loaded {len(docs)} documents from {basename}") # Add to the merged documents list and create ID mapping for doc in docs: if "id" in doc: # If the document already exists, use the one with attributes if possible doc_id = doc["id"] if doc_id in docs_by_id: if "attributes" not in doc and "attributes" in docs_by_id[doc_id]: # Keep the existing document that has attributes continue # Initialize attributes if needed if "attributes" not in doc: doc["attributes"] = {} # Add to the mapping docs_by_id[doc_id] = doc else: # No ID, can't match with attributes if "attributes" not in doc: doc["attributes"] = {} merged_docs.append(doc) except Exception as e: logger.error(f"Error processing document file {doc_path}: {e}") continue logger.info(f"Loaded {len(docs_by_id)} unique documents with IDs") # Now process each attribute subdirectory for subdir in attr_subdirs: try: logger.info(f"Processing attribute directory: {subdir}") attr_files = list_jsonl_files(subdir, s3_client, recursive) total_attr_files += len(attr_files) logger.info(f"Found {len(attr_files)} attribute files in {subdir}") # Create a mapping from document basename to attribute file path attr_file_map = {} for attr_path in attr_files: if attr_path.startswith("s3://"): _, attr_key = parse_s3_path(attr_path) basename = os.path.basename(attr_key) else: basename = os.path.basename(attr_path) attr_file_map[basename] = attr_path # Go through the document files again to find matching attributes for doc_path in doc_files: try: if doc_path.startswith("s3://"): _, doc_key = parse_s3_path(doc_path) basename = os.path.basename(doc_key) else: basename = os.path.basename(doc_path) # Find matching attribute file if basename in attr_file_map: attr_path = attr_file_map[basename] attrs = load_jsonl_file(attr_path, s3_client) if not attrs: logger.warning(f"No attributes loaded from {os.path.basename(attr_path)} (path: {attr_path})") continue logger.info(f"Loaded {len(attrs)} attributes from {os.path.basename(attr_path)}") # Create a mapping from document ID to attributes attr_by_id = {attr["id"]: attr for attr in attrs if "id" in attr} # Count documents with matched attributes docs_matched_in_file = 0 # Merge attributes into documents by ID for doc_id, doc in docs_by_id.items(): if doc_id in attr_by_id: docs_matched_in_file += 1 # If attributes document has attributes field, merge them if "attributes" in attr_by_id[doc_id]: doc["attributes"].update(attr_by_id[doc_id]["attributes"]) logger.info(f"Matched attributes for {docs_matched_in_file} documents from {basename} in {subdir}") except Exception as e: logger.error(f"Error processing attribute file {attr_path}: {e}") continue except Exception as e: logger.error(f"Error processing attribute subdirectory {subdir}: {e}") continue # Convert the dictionary to a list for return merged_docs.extend(docs_by_id.values()) logger.info(f"Total documents processed: {len(merged_docs)}") logger.info(f"Total attribute files processed: {total_attr_files}") logger.info(f"Total attribute subdirectories processed: {len(attr_subdirs)}") return merged_docs except Exception as e: logger.error(f"Error in load_documents_and_attributes: {e}") raise def apply_rule(doc, rule): """ Apply a rule to determine if a document meets the PII criteria. Args: doc: The document JSON object rule: Either a tuple (attribute_name, rule_type) for simple rules, or an ExpressionNode for complex boolean expressions Returns: True if the document matches the rule, False otherwise """ # Handle simple rule if not is_complex_expression(rule): return apply_simple_rule(doc, rule[0], rule[1]) # Handle complex expression return evaluate_expression(doc, rule) def calculate_attribute_aggregate(doc, attribute_name, operation_type): """ Calculate an aggregate value for a numeric attribute. Args: doc: The document JSON object attribute_name: The attribute field to aggregate (e.g., "pii_tagging_ratio") operation_type: The type of aggregation to perform (e.g., "avg") Returns: The aggregated value, or None if calculation is not possible """ # Check if document has attributes if "attributes" not in doc or not doc["attributes"]: logger.debug(f"Document {doc.get('id', 'unknown')} has no attributes") return None attributes = doc["attributes"] # Check if the specific attribute exists if attribute_name not in attributes: logger.debug(f"Document {doc.get('id', 'unknown')} doesn't have attribute: {attribute_name}") return None if not attributes[attribute_name]: logger.debug(f"Document {doc.get('id', 'unknown')} has empty attribute: {attribute_name}") return None # Extract the numeric values from the attribute spans # Each span is formatted as [start_pos, end_pos, value] values = [span[2] for span in attributes[attribute_name] if len(span) >= 3 and span[2] is not None] if not values: logger.debug(f"Document {doc.get('id', 'unknown')} has no valid values for attribute: {attribute_name}") return None # Convert all values to float try: numeric_values = [float(value) for value in values] except (ValueError, TypeError): logger.debug(f"Document {doc.get('id', 'unknown')} has non-numeric values for attribute: {attribute_name}") return None # Perform the aggregation if operation_type == "avg": if not numeric_values: return None return sum(numeric_values) / len(numeric_values) # Add more aggregation types here as needed else: raise ValueError(f"Unknown operation type: {operation_type}") def apply_simple_rule(doc, attribute_name, rule_type): """ Apply a simple rule to determine if a document meets the PII criteria. Args: doc: The document JSON object attribute_name: The attribute field to check (e.g., "gpt_4_1_contains_pii") rule_type: 'any' for any true value, 'all' for all true values, or a string containing an operation and comparison (e.g., 'avg>0.3') Returns: True if the document matches the rule, False otherwise """ # Check if document has attributes if "attributes" not in doc or not doc["attributes"]: logger.debug(f"Document {doc.get('id', 'unknown')} has no attributes") return False attributes = doc["attributes"] # Check if the specific attribute exists if attribute_name not in attributes: logger.debug(f"Document {doc.get('id', 'unknown')} doesn't have attribute: {attribute_name}") return False if not attributes[attribute_name]: logger.debug(f"Document {doc.get('id', 'unknown')} has empty attribute: {attribute_name}") return False # Handle numeric comparison rules (e.g., 'avg>0.3') if any(op in rule_type for op in [">", "<", ">=", "<=", "=="]): # Parse the rule type into operation and comparison operation_parts = rule_type.split(">") if len(operation_parts) == 2: operation_type, threshold = operation_parts comparison_op = ">" else: operation_parts = rule_type.split("<") if len(operation_parts) == 2: operation_type, threshold = operation_parts comparison_op = "<" else: operation_parts = rule_type.split(">=") if len(operation_parts) == 2: operation_type, threshold = operation_parts comparison_op = ">=" else: operation_parts = rule_type.split("<=") if len(operation_parts) == 2: operation_type, threshold = operation_parts comparison_op = "<=" else: operation_parts = rule_type.split("==") if len(operation_parts) == 2: operation_type, threshold = operation_parts comparison_op = "==" else: raise ValueError(f"Invalid rule type: {rule_type}") # Convert threshold to float try: threshold = float(threshold) except ValueError: raise ValueError(f"Invalid threshold value: {threshold}") # Calculate the aggregate value aggregate_value = calculate_attribute_aggregate(doc, attribute_name, operation_type) if aggregate_value is None: logger.debug(f"Document {doc.get('id', 'unknown')} has no valid aggregate value for attribute: {attribute_name}") return False # Apply the comparison if comparison_op == ">": result = aggregate_value > threshold elif comparison_op == "<": result = aggregate_value < threshold elif comparison_op == ">=": result = aggregate_value >= threshold elif comparison_op == "<=": result = aggregate_value <= threshold elif comparison_op == "==": result = aggregate_value == threshold else: raise ValueError(f"Invalid comparison operator: {comparison_op}") if result: logger.debug(f"Document {doc.get('id', 'unknown')} matched numeric rule '{attribute_name}:{rule_type}' with value {aggregate_value}") return result # Handle boolean rules (any/all) if rule_type in ["any", "all"]: # Extract the boolean values from the attribute spans # Each span is formatted as [start_pos, end_pos, value] values = [span[2] for span in attributes[attribute_name] if len(span) >= 3 and span[2] is not None] if not values: logger.debug(f"Document {doc.get('id', 'unknown')} has no valid values for attribute: {attribute_name}") return False # Apply the rule if rule_type == "any": result = any(values) if result: logger.debug(f"Document {doc.get('id', 'unknown')} matched rule '{attribute_name}:{rule_type}' (found True in {len(values)} values)") return result elif rule_type == "all": result = all(values) if result: logger.debug(f"Document {doc.get('id', 'unknown')} matched rule '{attribute_name}:{rule_type}' (all {len(values)} values are True)") return result raise ValueError(f"Unknown rule type: {rule_type}") def evaluate_expression(doc, expr): """ Evaluate a boolean expression on a document. Args: doc: The document JSON object expr: An ExpressionNode representing a boolean expression Returns: True if the document matches the expression, False otherwise """ if isinstance(expr, RuleNode): # Base case: evaluate a leaf rule node return apply_simple_rule(doc, expr.attribute_name, expr.rule_type) elif isinstance(expr, NotNode): # NOT operator return not evaluate_expression(doc, expr.operand) elif isinstance(expr, BinaryNode): # Binary operators (AND/OR) if expr.operator == "AND": # Short-circuit AND evaluation return evaluate_expression(doc, expr.left) and evaluate_expression(doc, expr.right) elif expr.operator == "OR": # Short-circuit OR evaluation return evaluate_expression(doc, expr.left) or evaluate_expression(doc, expr.right) # Should not reach here if the expression tree is well-formed raise ValueError(f"Invalid expression node type: {type(expr)}") def tokenize_expression(expression): """ Tokenize a rule expression string into a list of tokens. Args: expression: A string containing a boolean rule expression (e.g., "not rule1:any and rule2:all") Returns: A list of Token objects """ tokens = [] i = 0 expression = expression.strip() while i < len(expression): char = expression[i] # Skip whitespace if char.isspace(): i += 1 continue # Handle parentheses elif char == "(": tokens.append(Token(TokenType.LPAREN)) i += 1 elif char == ")": tokens.append(Token(TokenType.RPAREN)) i += 1 # Handle operators elif i + 2 < len(expression) and expression[i : i + 3].lower() == "and": # Check if it's a standalone 'and' and not part of a word if (i == 0 or expression[i - 1].isspace() or expression[i - 1] in "()") and ( i + 3 >= len(expression) or expression[i + 3].isspace() or expression[i + 3] in "()" ): tokens.append(Token(TokenType.AND)) i += 3 else: # It's part of an attribute name rule_start = i while i < len(expression) and not expression[i].isspace() and expression[i] not in "()": if i + 1 < len(expression) and expression[i] == ":": break i += 1 # Process rule if we found a colon if i < len(expression) and expression[i] == ":": rule_end = i i += 1 # Skip the colon # Find the rule type type_start = i while i < len(expression) and not expression[i].isspace() and expression[i] not in "()": i += 1 rule_name = expression[rule_start:rule_end] rule_type = expression[type_start:i] tokens.append(Token(TokenType.RULE, (rule_name, rule_type))) else: raise ValueError(f"Invalid rule format at position {rule_start}") elif i + 1 < len(expression) and expression[i : i + 2].lower() == "or": # Check if it's a standalone 'or' and not part of a word if (i == 0 or expression[i - 1].isspace() or expression[i - 1] in "()") and ( i + 2 >= len(expression) or expression[i + 2].isspace() or expression[i + 2] in "()" ): tokens.append(Token(TokenType.OR)) i += 2 else: # Part of an attribute name rule_start = i while i < len(expression) and not expression[i].isspace() and expression[i] not in "()": if i + 1 < len(expression) and expression[i] == ":": break i += 1 # Process rule if we found a colon if i < len(expression) and expression[i] == ":": rule_end = i i += 1 # Skip the colon # Find the rule type type_start = i while i < len(expression) and not expression[i].isspace() and expression[i] not in "()": i += 1 rule_name = expression[rule_start:rule_end] rule_type = expression[type_start:i] tokens.append(Token(TokenType.RULE, (rule_name, rule_type))) else: raise ValueError(f"Invalid rule format at position {rule_start}") elif i + 2 < len(expression) and expression[i : i + 3].lower() == "not": # Check if it's a standalone 'not' and not part of a word if (i == 0 or expression[i - 1].isspace() or expression[i - 1] in "()") and ( i + 3 >= len(expression) or expression[i + 3].isspace() or expression[i + 3] in "()" ): tokens.append(Token(TokenType.NOT)) i += 3 else: # Part of an attribute name rule_start = i while i < len(expression) and not expression[i].isspace() and expression[i] not in "()": if i + 1 < len(expression) and expression[i] == ":": break i += 1 # Process rule if we found a colon if i < len(expression) and expression[i] == ":": rule_end = i i += 1 # Skip the colon # Find the rule type type_start = i while i < len(expression) and not expression[i].isspace() and expression[i] not in "()": i += 1 rule_name = expression[rule_start:rule_end] rule_type = expression[type_start:i] tokens.append(Token(TokenType.RULE, (rule_name, rule_type))) else: raise ValueError(f"Invalid rule format at position {rule_start}") # Handle rule (attribute:type) else: rule_start = i while i < len(expression) and not expression[i].isspace() and expression[i] not in "()": if i + 1 < len(expression) and expression[i] == ":": break i += 1 # Process rule if we found a colon if i < len(expression) and expression[i] == ":": rule_end = i i += 1 # Skip the colon # Find the rule type type_start = i while i < len(expression) and not expression[i].isspace() and expression[i] not in "()": i += 1 rule_name = expression[rule_start:rule_end] rule_type = expression[type_start:i] tokens.append(Token(TokenType.RULE, (rule_name, rule_type))) else: raise ValueError(f"Invalid rule format at position {rule_start}") tokens.append(Token(TokenType.EOF)) return tokens class Parser: """ Parser for boolean rule expressions. Implements a recursive descent parser for expressions with the following grammar: expression → or_expr or_expr → and_expr ("or" and_expr)* and_expr → unary_expr ("and" unary_expr)* unary_expr → "not" unary_expr | primary primary → rule | "(" expression ")" rule → ATTRIBUTE ":" RULE_TYPE """ def __init__(self, tokens): self.tokens = tokens self.current = 0 def parse(self): """Parse the tokens into an expression tree.""" return self.expression() def expression(self): """Parse an expression (top level).""" return self.or_expr() def or_expr(self): """Parse an OR expression.""" expr = self.and_expr() while self.match(TokenType.OR): right = self.and_expr() expr = BinaryNode(expr, right, "OR") return expr def and_expr(self): """Parse an AND expression.""" expr = self.unary_expr() while self.match(TokenType.AND): right = self.unary_expr() expr = BinaryNode(expr, right, "AND") return expr def unary_expr(self): """Parse a unary expression (NOT).""" if self.match(TokenType.NOT): operand = self.unary_expr() return NotNode(operand) return self.primary() def primary(self): """Parse a primary expression (rule or parenthesized expression).""" if self.match(TokenType.RULE): rule_tuple = self.previous().value attribute_name, rule_type = rule_tuple # Validate rule type if rule_type not in ["any", "all"] and not any(op in rule_type for op in [">", "<", ">=", "<=", "=="]): raise ValueError(f"Invalid rule type: {rule_type}. Supported types: 'any', 'all', or numeric comparison (e.g., 'avg>0.3')") return RuleNode(attribute_name, rule_type) if self.match(TokenType.LPAREN): expr = self.expression() self.consume(TokenType.RPAREN, "Expected ')' after expression.") return expr raise ValueError(f"Expected rule or '(' at position {self.current}") def match(self, *types): """Check if the current token matches any of the given types.""" for type in types: if self.check(type): self.advance() return True return False def check(self, type): """Check if the current token is of the given type without advancing.""" if self.is_at_end(): return False return self.peek().type == type def advance(self): """Advance to the next token and return the previous one.""" if not self.is_at_end(): self.current += 1 return self.previous() def consume(self, type, message): """Consume the current token if it matches the expected type.""" if self.check(type): return self.advance() raise ValueError(f"{message} at position {self.current}") def is_at_end(self): """Check if we've reached the end of the tokens.""" return self.peek().type == TokenType.EOF def peek(self): """Return the current token without advancing.""" return self.tokens[self.current] def previous(self): """Return the previous token.""" return self.tokens[self.current - 1] def parse_rule(rule_string): """ Parse a rule string into an expression tree or a simple attribute-rule_type tuple. Args: rule_string: A string containing a rule or boolean expression of rules Returns: Either a tuple (attribute_name, rule_type) for simple rules, or an ExpressionNode for complex boolean expressions """ # Check if this is a simple rule if ( "and" not in rule_string.lower() and "or" not in rule_string.lower() and "not" not in rule_string.lower() and "(" not in rule_string and ")" not in rule_string ): # Simple rule format: attribute_name:rule_type parts = rule_string.split(":", 1) if len(parts) != 2: raise ValueError(f"Invalid rule format: {rule_string}. Expected format: 'attribute_name:rule_type'") attribute_name, rule_type = parts # Check for numeric comparison rule_type if any(op in rule_type for op in [">", "<", ">=", "<=", "=="]): # This is a numeric comparison rule - we'll validate it in apply_simple_rule return attribute_name, rule_type elif rule_type not in ["any", "all"]: raise ValueError(f"Invalid rule type: {rule_type}. Supported types: 'any', 'all', or numeric comparison (e.g., 'avg>0.3')") return attribute_name, rule_type else: # Complex rule expression try: tokens = tokenize_expression(rule_string) parser = Parser(tokens) return parser.parse() except Exception as e: raise ValueError(f"Error parsing expression '{rule_string}': {e}") def is_complex_expression(rule): """Check if the rule is a complex boolean expression.""" return isinstance(rule, ExpressionNode) def calculate_iou(ref_ids, hyp_ids): """Calculate Intersection over Union of two sets of document IDs.""" ref_set = set(ref_ids) hyp_set = set(hyp_ids) intersection = ref_set.intersection(hyp_set) union = ref_set.union(hyp_set) if not union: return 0.0 return len(intersection) / len(union) def collect_rule_stats(expression, doc): """ Collect statistics for all rules within a complex expression. Args: expression: A rule expression (either a tuple or ExpressionNode) doc: The document to analyze Returns: A dictionary with rule statistics """ rule_stats = defaultdict(int) # Handle simple rule if not is_complex_expression(expression): attribute_name, rule_type = expression # Only process if document has this attribute if "attributes" in doc and doc["attributes"] and attribute_name in doc["attributes"] and doc["attributes"][attribute_name]: # The rule name will be the key for the statistics rule_name = f"{attribute_name}:{rule_type}" # Count entries in the attribute entries = doc["attributes"][attribute_name] rule_stats[f"{rule_name}_total_entries"] += len(entries) # Count positive values for span in entries: if len(span) >= 3 and span[2] is True: rule_stats[f"{rule_name}_positive_entries"] += 1 # Check if document matches the rule if apply_simple_rule(doc, attribute_name, rule_type): rule_stats[f"{rule_name}_matched_docs"] += 1 return rule_stats # For complex expressions, traverse the expression tree if isinstance(expression, RuleNode): # Base case: leaf node is a simple rule attribute_name, rule_type = expression.attribute_name, expression.rule_type if "attributes" in doc and doc["attributes"] and attribute_name in doc["attributes"] and doc["attributes"][attribute_name]: # The rule name will be the key for the statistics rule_name = f"{attribute_name}:{rule_type}" # Count entries in the attribute entries = doc["attributes"][attribute_name] rule_stats[f"{rule_name}_total_entries"] += len(entries) # Count positive values for span in entries: if len(span) >= 3 and span[2] is True: rule_stats[f"{rule_name}_positive_entries"] += 1 # Check if document matches the rule if apply_simple_rule(doc, attribute_name, rule_type): rule_stats[f"{rule_name}_matched_docs"] += 1 elif isinstance(expression, NotNode): # Get stats from the operand operand_stats = collect_rule_stats(expression.operand, doc) # Merge with current stats for key, value in operand_stats.items(): rule_stats[key] += value elif isinstance(expression, BinaryNode): # Get stats from both sides left_stats = collect_rule_stats(expression.left, doc) right_stats = collect_rule_stats(expression.right, doc) # Merge with current stats for key, value in left_stats.items(): rule_stats[key] += value for key, value in right_stats.items(): rule_stats[key] += value return rule_stats def get_expression_summary(expression): """ Generate a string representation of a rule expression. Args: expression: A rule expression (either a tuple or ExpressionNode) Returns: A string representation of the expression """ if not is_complex_expression(expression): return f"{expression[0]}:{expression[1]}" if isinstance(expression, RuleNode): return f"{expression.attribute_name}:{expression.rule_type}" elif isinstance(expression, NotNode): return f"not {get_expression_summary(expression.operand)}" elif isinstance(expression, BinaryNode): left_summary = get_expression_summary(expression.left) right_summary = get_expression_summary(expression.right) return f"({left_summary} {expression.operator.lower()} {right_summary})" return str(expression) def compare_documents(ref_docs, hyp_docs, ref_rule, hyp_rule): """ Compare two sets of documents using the specified rules and calculate IoU. Args: ref_docs: List of reference documents hyp_docs: List of hypothesis documents ref_rule: Rule expression for reference (tuple or ExpressionNode) hyp_rule: Rule expression for hypothesis (tuple or ExpressionNode) Returns: Dictionary with comparison results """ # Extract document IDs and create ID-to-document maps ref_id_to_doc = {doc["id"]: doc for doc in ref_docs if "id" in doc} hyp_id_to_doc = {doc["id"]: doc for doc in hyp_docs if "id" in doc} # Get common document IDs common_ids = set(ref_id_to_doc.keys()).intersection(set(hyp_id_to_doc.keys())) # Apply rules to each document ref_matches = set() hyp_matches = set() # Track rule statistics ref_rule_stats = defaultdict(int) hyp_rule_stats = defaultdict(int) for doc_id in common_ids: ref_doc = ref_id_to_doc[doc_id] hyp_doc = hyp_id_to_doc[doc_id] # Collect statistics for all rules in the expressions doc_ref_rule_stats = collect_rule_stats(ref_rule, ref_doc) doc_hyp_rule_stats = collect_rule_stats(hyp_rule, hyp_doc) # Merge with overall stats for key, value in doc_ref_rule_stats.items(): ref_rule_stats[key] += value for key, value in doc_hyp_rule_stats.items(): hyp_rule_stats[key] += value # Check if document matches the rule expressions if apply_rule(ref_doc, ref_rule): ref_matches.add(doc_id) ref_rule_stats["expression_matched_docs"] += 1 if apply_rule(hyp_doc, hyp_rule): hyp_matches.add(doc_id) hyp_rule_stats["expression_matched_docs"] += 1 # Calculate IoU iou = calculate_iou(ref_matches, hyp_matches) # Collect detailed statistics tp = len(ref_matches.intersection(hyp_matches)) fp = len(hyp_matches - ref_matches) fn = len(ref_matches - hyp_matches) precision = tp / (tp + fp) if (tp + fp) > 0 else 0 recall = tp / (tp + fn) if (tp + fn) > 0 else 0 f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0 # Generate string representations of the expressions ref_rule_str = get_expression_summary(ref_rule) hyp_rule_str = get_expression_summary(hyp_rule) return { "total_docs": len(common_ids), "ref_rule": ref_rule_str, "hyp_rule": hyp_rule_str, "ref_matches": len(ref_matches), "hyp_matches": len(hyp_matches), "intersection": tp, "union": tp + fp + fn, "true_positives": tp, "false_positives": fp, "false_negatives": fn, "precision": precision, "recall": recall, "f1": f1, "iou": iou, "ref_rule_stats": dict(ref_rule_stats), "hyp_rule_stats": dict(hyp_rule_stats), } def format_rule_stats(rule_stats): """Format rule statistics for display.""" # Group the statistics by rule name grouped_stats = defaultdict(dict) # Process regular rule stats (format: "{rule_name}_{stat_type}") for key, value in rule_stats.items(): if key == "expression_matched_docs": # Special case for the overall expression match count continue # Extract rule name and stat type if "_total_entries" in key: rule_name = key.replace("_total_entries", "") grouped_stats[rule_name]["total_entries"] = value elif "_positive_entries" in key: rule_name = key.replace("_positive_entries", "") grouped_stats[rule_name]["positive_entries"] = value elif "_matched_docs" in key: rule_name = key.replace("_matched_docs", "") grouped_stats[rule_name]["matched_docs"] = value # Format the grouped statistics as a list of strings formatted_stats = [] for rule_name, stats in grouped_stats.items(): formatted_stats.append( f" {rule_name}:\n" f" - Total Entries: {stats.get('total_entries', 0)}\n" f" - Positive Entries: {stats.get('positive_entries', 0)}\n" f" - Matched Documents: {stats.get('matched_docs', 0)}" ) # Add the expression matched count if available if "expression_matched_docs" in rule_stats: formatted_stats.append(f" Overall Expression Matched Documents: {rule_stats['expression_matched_docs']}") return "\n".join(formatted_stats) def collect_numeric_attributes(documents): """ Collect all numeric attribute values from documents. Args: documents: List of documents with attributes Returns: Dictionary mapping attribute names to lists of numeric values """ numeric_attributes = defaultdict(list) for doc in documents: if "attributes" not in doc or not doc["attributes"]: continue for attr_name, attr_values in doc["attributes"].items(): if not attr_values: continue # Try to extract numeric values from the attribute spans # Each span is formatted as [start_pos, end_pos, value] for span in attr_values: if len(span) >= 3 and span[2] is not None: try: # Convert to float if it's a numeric value value = float(span[2]) numeric_attributes[attr_name].append(value) except (ValueError, TypeError): # Not a numeric value, skip pass # Filter out attributes with no or too few numeric values return {k: v for k, v in numeric_attributes.items() if len(v) > 5} def generate_cdf_plot(values, attribute_name): """ Generate a CDF plot for the given numeric values. Args: values: List of numeric values attribute_name: Name of the attribute (for plot title) Returns: Base64-encoded PNG image of the plot or None if there's an error """ try: # Ensure we have enough data points if len(values) < 5: logger.warning(f"Not enough data points to generate CDF for {attribute_name}") return None # Remove any NaN or infinite values values = np.array([v for v in values if np.isfinite(v)]) if len(values) < 5: logger.warning(f"Not enough finite data points to generate CDF for {attribute_name}") return None # Handle extreme values by removing outliers (optional) # if len(values) > 30: # Only apply if we have enough data points # q1, q3 = np.percentile(values, [25, 75]) # iqr = q3 - q1 # lower_bound = q1 - 3 * iqr # upper_bound = q3 + 3 * iqr # values = values[(values >= lower_bound) & (values <= upper_bound)] # Sort values for CDF calculation values = np.sort(values) # Create a Figure object (no interactive display) fig = Figure(figsize=(10, 6)) ax = fig.add_subplot(1, 1, 1) # Calculate CDF (y-values are 0 to 1 for cumulative probability) y = np.arange(1, len(values) + 1) / len(values) # Plot the CDF ax.plot(values, y, "b-", linewidth=2) ax.grid(True, linestyle="--", alpha=0.7) # Add labels and title ax.set_xlabel("Value", fontsize=12) ax.set_ylabel("Cumulative Probability", fontsize=12) ax.set_title(f"CDF of {attribute_name}", fontsize=14) # Ensure the y-axis goes from 0 to 1 for probability ax.set_ylim(0, 1.05) # Add some statistics to the plot if len(values) > 0: mean_val = np.mean(values) median_val = np.median(values) min_val = np.min(values) max_val = np.max(values) stats_text = f"n={len(values)}\nmin={min_val:.2f}\nmax={max_val:.2f}\nmean={mean_val:.2f}\nmedian={median_val:.2f}" ax.text(0.02, 0.98, stats_text, transform=ax.transAxes, verticalalignment="top", bbox=dict(boxstyle="round", facecolor="white", alpha=0.8)) # Make layout tight fig.tight_layout() # Convert to base64 for embedding in HTML buf = BytesIO() fig.savefig(buf, format="png", dpi=100) buf.seek(0) img_base64 = base64.b64encode(buf.getvalue()).decode("utf-8") return img_base64 except Exception as e: logger.error(f"Error generating CDF plot for {attribute_name}: {e}") return None def generate_attribute_plots_html(numeric_attributes, max_plots=20): """ Generate HTML section with CDF plots for all numeric attributes. Args: numeric_attributes: Dictionary mapping attribute names to lists of numeric values max_plots: Maximum number of plots to generate Returns: HTML string with embedded CDF plots """ if not numeric_attributes: return "" html = """

Numeric Attribute Distributions

""" plot_count = 0 # Sort attributes by number of values (most values first) sorted_attrs = sorted(numeric_attributes.items(), key=lambda x: len(x[1]), reverse=True) for attr_name, values in sorted_attrs: if len(values) < 10: # Skip attributes with too few values for meaningful plots continue if plot_count >= max_plots: logger.info(f"Limiting CDF plots to {max_plots} attributes to avoid performance issues") break # Generate the CDF plot img_base64 = generate_cdf_plot(values, attr_name) # Only add to HTML if plot generation was successful if img_base64: html += f"""

{attr_name}

CDF plot for {attr_name}

Number of values: {len(values)}

""" plot_count += 1 if plot_count == 0: return "" # Don't add the section if no plots were generated html += """
""" return html def generate_html_report(docs, title, summary, output_path): """ Generate an HTML report file with document texts Args: docs: List of documents to include in the report title: Title of the report summary: Summary statistics to include at the top output_path: Path to save the HTML file Returns: None """ # Create header with CSS styling html = f""" {title}
{title} ({len(docs)} documents)
/ to navigate  Home/End

Summary

{summary}
""" # Add each document with a unique ID for i, doc in enumerate(docs, 1): doc_id = doc.get("id", f"unknown_{i}") # Get document text, falling back to JSON representation if not available doc_text = doc.get("text", json.dumps(doc, indent=2)) # The first document gets the "selected" class selected_class = " selected" if i == 1 else "" html += f"""
Document ID: {doc_id}
{pyhtml.escape(doc_text)}
""" # Add JavaScript for keyboard navigation and summary toggle html += """
""" # Create directory if it doesn't exist os.makedirs(os.path.dirname(os.path.abspath(output_path)), exist_ok=True) # Write HTML to file with open(output_path, "w", encoding="utf-8") as f: f.write(html) logger.info(f"Generated HTML report: {output_path}") def main(): global args args = parse_args() # Set up logging based on arguments if args.debug: logger.setLevel(logging.DEBUG) logger.debug("Debug logging enabled") # Set up S3 client if needed s3_client = None if args.docs_folder.startswith("s3://") or (args.attr_folder and args.attr_folder.startswith("s3://")): session = boto3.Session(profile_name=args.aws_profile) if args.aws_profile else boto3.Session() s3_client = session.client("s3") # Parse the rules logger.info(f"Parsing reference rule expression: {args.ref_rule}") ref_rule = parse_rule(args.ref_rule) logger.info(f"Parsing hypothesis rule expression: {args.hyp_rule}") hyp_rule = parse_rule(args.hyp_rule) # Generate string representations of the expressions ref_rule_str = get_expression_summary(ref_rule) hyp_rule_str = get_expression_summary(hyp_rule) logger.info(f"Reference rule parsed as: {ref_rule_str}") logger.info(f"Hypothesis rule parsed as: {hyp_rule_str}") # Determine attributes folder attr_folder = get_attributes_folder(args.docs_folder, args.attr_folder) logger.info(f"Using attributes folder: {attr_folder}") # Load documents and merge with attributes from all subdirectories logger.info("Loading documents and merging with all attributes...") all_docs = load_documents_and_attributes(args.docs_folder, attr_folder, s3_client, args.recursive) # Create output directory if it doesn't exist os.makedirs(args.output_dir, exist_ok=True) # Use the same documents for both reference and hypothesis evaluation # since we've loaded all attributes into each document ref_docs = all_docs hyp_docs = all_docs # Compare the documents logger.info("Comparing documents using reference and hypothesis rules...") comparison_result = compare_documents(ref_docs, hyp_docs, ref_rule, hyp_rule) # Get document IDs for each category ref_matches = set() hyp_matches = set() # Create mappings from document IDs to documents doc_map = {doc["id"]: doc for doc in all_docs if "id" in doc} # Find documents that match the reference and hypothesis rules for doc_id, doc in doc_map.items(): if apply_rule(doc, ref_rule): ref_matches.add(doc_id) if apply_rule(doc, hyp_rule): hyp_matches.add(doc_id) # Calculate document sets for each category true_positives_ids = ref_matches.intersection(hyp_matches) true_negatives_ids = set(doc_map.keys()) - ref_matches - hyp_matches false_positives_ids = hyp_matches - ref_matches false_negatives_ids = ref_matches - hyp_matches # Create document lists for each category true_positives = [doc_map[doc_id] for doc_id in true_positives_ids] true_negatives = [doc_map[doc_id] for doc_id in true_negatives_ids] false_positives = [doc_map[doc_id] for doc_id in false_positives_ids] false_negatives = [doc_map[doc_id] for doc_id in false_negatives_ids] # Calculate metrics tp = len(true_positives) tn = len(true_negatives) fp = len(false_positives) fn = len(false_negatives) precision = tp / (tp + fp) if (tp + fp) > 0 else 0 recall = tp / (tp + fn) if (tp + fn) > 0 else 0 f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0 iou = tp / (tp + fp + fn) if (tp + fp + fn) > 0 else 0 # Prepare overall statistics overall_stats = { "total_docs": len(doc_map), "ref_matches": len(ref_matches), "hyp_matches": len(hyp_matches), "true_positives": tp, "true_negatives": tn, "false_positives": fp, "false_negatives": fn, "precision": precision, "recall": recall, "f1": f1, "iou": iou, "ref_rule_stats": comparison_result["ref_rule_stats"], "hyp_rule_stats": comparison_result["hyp_rule_stats"], } # Prepare summary summary = f"""Reference Rule: {args.ref_rule} Hypothesis Rule: {args.hyp_rule} Total Documents: {overall_stats['total_docs']} Reference Matches: {overall_stats['ref_matches']} Hypothesis Matches: {overall_stats['hyp_matches']} True Positives: {tp} True Negatives: {tn} False Positives: {fp} False Negatives: {fn} Precision: {precision:.4f} Recall: {recall:.4f} F1 Score: {f1:.4f} IoU: {iou:.4f} """ # Generate HTML reports for each category logger.info("Generating HTML reports...") # True Positives generate_html_report( true_positives[:1000], "True Positives - Documents matching both Reference and Hypothesis Rules", summary, os.path.join(args.output_dir, "true_positives.html"), ) # True Negatives generate_html_report( true_negatives[:1000], "True Negatives - Documents not matching either Rule", summary, os.path.join(args.output_dir, "true_negatives.html") ) # False Positives generate_html_report( false_positives[:1000], "False Positives - Documents matching Hypothesis but not Reference Rule", summary, os.path.join(args.output_dir, "false_positives.html"), ) # False Negatives generate_html_report( false_negatives[:1000], "False Negatives - Documents matching Reference but not Hypothesis Rule", summary, os.path.join(args.output_dir, "false_negatives.html"), ) # Collect numeric attributes and generate CDF plots if not disabled attribute_plots_html = "" if not args.disable_plots: logger.info("Collecting numeric attributes for CDF plots...") numeric_attributes = collect_numeric_attributes(all_docs) if numeric_attributes: logger.info(f"Found {len(numeric_attributes)} numeric attributes suitable for CDF plots") # Generate CDF plots HTML with the specified maximum number of plots attribute_plots_html = generate_attribute_plots_html(numeric_attributes, args.max_plots) else: logger.info("No numeric attributes found for CDF plots") else: logger.info("CDF plot generation disabled by --disable-plots flag") # Generate index.html file that links to all reports index_html = f""" PII Rule Comparison Results

PII Rule Comparison Results

Summary

{summary}

Result Categories

True Positives: {tp}

Documents that match both the reference and hypothesis rules.

View True Positives

True Negatives: {tn}

Documents that don't match either the reference or hypothesis rules.

View True Negatives

False Positives: {fp}

Documents that match the hypothesis rule but not the reference rule.

View False Positives

False Negatives: {fn}

Documents that match the reference rule but not the hypothesis rule.

View False Negatives
{attribute_plots_html} """ with open(os.path.join(args.output_dir, "index.html"), "w", encoding="utf-8") as f: f.write(index_html) # Print summary logger.info("\n--- COMPARISON SUMMARY ---") logger.info(f"Documents Folder: {args.docs_folder}") logger.info(f"Attributes Folder: {attr_folder}") logger.info(f"Reference Rule Expression: {args.ref_rule}") logger.info(f" Parsed as: {ref_rule_str}") logger.info(f"Hypothesis Rule Expression: {args.hyp_rule}") logger.info(f" Parsed as: {hyp_rule_str}") logger.info(f"Total Documents: {overall_stats['total_docs']}") # Print rule statistics logger.info("\n--- RULE MATCH STATISTICS ---") logger.info("\nReference Rules:") logger.info(format_rule_stats(overall_stats["ref_rule_stats"])) logger.info("\nHypothesis Rules:") logger.info(format_rule_stats(overall_stats["hyp_rule_stats"])) # Print comparison metrics logger.info("\n--- COMPARISON METRICS ---") logger.info(f"True Positives: {tp}") logger.info(f"True Negatives: {tn}") logger.info(f"False Positives: {fp}") logger.info(f"False Negatives: {fn}") logger.info(f"Precision: {precision:.4f}") logger.info(f"Recall: {recall:.4f}") logger.info(f"F1 Score: {f1:.4f}") logger.info(f"IoU: {iou:.4f}") # Output all available attributes that have been loaded logger.info("\n--- AVAILABLE ATTRIBUTES ---") all_attributes = set() for doc in all_docs: if "attributes" in doc and doc["attributes"]: all_attributes.update(doc["attributes"].keys()) if all_attributes: logger.info(f"Found {len(all_attributes)} unique attributes:") for attr in sorted(all_attributes): logger.info(f" - {attr}") else: logger.info("No attributes found in any documents.") logger.info(f"\nResults saved to: {args.output_dir}/index.html") if __name__ == "__main__": main() # Example commands with actual S3 paths: """ # Example for AI2 OE data with resume detection: python scripts/pii_rule_comparison.py \ --docs-folder s3://ai2-oe-data/jakep/s2pdf_dedupe_minhash_v1_mini/documents/ \ --ref-rule "gpt_4_1_contains_pii:any and not gpt_4_1_is_public_document:all" \ --hyp-rule "google_gemma-3-4b-it_is_resume_cv:any" \ --output-dir results/resume_detection \ --recursive \ --debug # Example for PII detection comparison: python scripts/pii_rule_comparison.py \ --docs-folder s3://allenai-dolma/documents/v1.5 \ --ref-rule "contains_pii:any" \ --hyp-rule "(contains_email_addresses:any or contains_phone_numbers:any) and not false_positive:any" \ --output-dir results/pii_detection \ --recursive \ --aws-profile dolma # Example with custom attributes folder: python scripts/pii_rule_comparison.py \ --docs-folder s3://bucket/path/documents \ --attr-folder s3://bucket/custom/location/attributes \ --ref-rule "gpt_4_1_contains_pii:any" \ --hyp-rule "custom_model_pii_detection:any" \ --output-dir results/custom_comparison \ --recursive """