#!/usr/bin/env python3 """ Tagging pipeline for Dolma JSONL datasets. For each .jsonl, .jsonl.gz, or .jsonl.ztd file under the dataset/documents folder, this script issues a model prompt completion collects the yes/no answers, and writes corresponding Dolma attributes JSONL files under scratch/attributes/, mirroring the input structure. """ import argparse import asyncio import atexit import gzip import json import logging import os import random import re import sys import time from typing import Optional from urllib.parse import urlparse import boto3 import httpx import zstandard as zstd from huggingface_hub import snapshot_download from pydantic import BaseModel, Field, ValidationError from olmocr.check import ( check_torch_gpu_available, ) from olmocr.metrics import MetricsKeeper from olmocr.s3_utils import ( download_directory, expand_s3_glob, get_s3_bytes_with_backoff, parse_s3_path, ) from olmocr.version import VERSION from olmocr.work_queue import LocalWorkQueue, S3WorkQueue, WorkQueue # Initialize logger logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) logger.propagate = False server_logger = logging.getLogger("vllm") server_logger.propagate = False file_handler = logging.FileHandler("olmocr-pipeline-debug.log", mode="a") file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")) console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")) # Add handlers to the logger logger.addHandler(file_handler) logger.addHandler(console_handler) server_logger.addHandler(file_handler) # Default port; overridden by --port SERVER_PORT = 30024 # Global variables for token statistics metrics = MetricsKeeper(window=60 * 5) class PIIClassification(BaseModel): primary_language: str = Field(..., description="Primary language as a two-letter code") document_type: str = Field(..., description="Basic summary of document type classification") is_resume_cv: Optional[bool] = Field(..., description="True if the document is a page from a resume or cv") contains_pii: Optional[bool] = Field(..., description="True if document contains PII") async def _process_single_page(page_text: str) -> PIIClassification: """Helper function to process a single document or page.""" text = page_text query = { "model": "google/gemma-3-4b-it", "messages": [ { "role": "user", "content": [ { "type": "text", "text": ( f"{text}\n\n-----------\n" "Given the text above, determine what type of document it is, and if it's a resume/CV. answer in JSON. The format of your json object should be {'primary_language': str, 'document_type': str, 'is_resume_cv': bool, 'contains_pii': bool}" ), } ], } ], "max_tokens": 100, "temperature": 0.0, "response_format": {"type": "json_schema", "json_schema": {"name": "PIIClassification", "schema": PIIClassification.model_json_schema()}}, } url = f"http://localhost:{SERVER_PORT}/v1/chat/completions" # ---------- HTTP call --------------------------------------------------- try: status, body = await apost(url, json_data=query) except Exception as e: logger.warning(f"Server network error: {e!s}") metrics.add_metrics(server_errors=1) return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None) metrics.add_metrics(server_requests=1) if status != 200: logger.warning(f"Server HTTP {status}: {body[:250]!r}") metrics.add_metrics(server_errors=1) return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None) # ---------- Parse base JSON -------------------------------------------- try: base = json.loads(body) except json.JSONDecodeError: logger.warning(f"Server response is not valid JSON: {body[:250]!r}") metrics.add_metrics(server_errors=1) return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None) # Token accounting if available if "usage" in base: metrics.add_metrics( server_input_tokens=base["usage"].get("prompt_tokens", 0), server_output_tokens=base["usage"].get("completion_tokens", 0), ) # ---------- Extract the model message ---------------------------------- try: content = base["choices"][0]["message"].get("content") except (KeyError, IndexError, AttributeError) as e: logger.warning(f"Missing fields in Server response: {e!s}") metrics.add_metrics(server_errors=1) return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None) if not isinstance(content, str): logger.warning("Server `content` is not a string; treating as error.") metrics.add_metrics(server_errors=1) return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None) try: pii_classification: PIIClassification = PIIClassification.model_validate_json(content) return pii_classification except ValidationError as e: logger.warning(f"Unable to parse pii classification object: {e!s}") metrics.add_metrics(server_errors=1) return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None) # Manual simple implementation of HTTP Post # It feels strange perhaps, but httpx and aiohttp are very complex beasts # Ex. the sessionpool in httpcore has 4 different locks in it, and I've noticed # that at the scale of 100M+ requests, that they deadlock in different strange ways async def apost(url, json_data): parsed_url = urlparse(url) host = parsed_url.hostname port = parsed_url.port or 80 path = parsed_url.path or "/" writer = None try: reader, writer = await asyncio.open_connection(host, port) json_payload = json.dumps(json_data) request = ( f"POST {path} HTTP/1.1\r\n" f"Host: {host}\r\n" f"Content-Type: application/json\r\n" f"Content-Length: {len(json_payload)}\r\n" f"Connection: close\r\n\r\n" f"{json_payload}" ) writer.write(request.encode()) await writer.drain() # Read status line status_line = await reader.readline() if not status_line: raise ConnectionError("No response from server") status_parts = status_line.decode().strip().split(" ", 2) if len(status_parts) < 2: raise ValueError(f"Malformed status line: {status_line.decode().strip()}") status_code = int(status_parts[1]) # Read headers headers = {} while True: line = await reader.readline() if line in (b"\r\n", b"\n", b""): break key, _, value = line.decode().partition(":") headers[key.strip().lower()] = value.strip() # Read response body if "content-length" in headers: body_length = int(headers["content-length"]) response_body = await reader.readexactly(body_length) else: raise ConnectionError("Anything other than fixed content length responses are not implemented yet") return status_code, response_body except Exception as e: # Pass through errors raise e finally: # But just make sure to close the socket on your way out if writer is not None: try: writer.close() await writer.wait_closed() except: pass async def process_dolma_document(args, dolma_doc, sem): """ Query model to detect PII, enforcing a JSON schema. Resilient to: • Transport / HTTP errors • Missing or malformed fields in the response • Non-string or None `content` • Bad JSON in the model's answer Always returns: (doc_id, contains_pii: bool, text_length: int) """ doc_id = dolma_doc.get("id") text = dolma_doc.get("text", "") or "" language_key_name = f"{args.model.replace('/', '_')}_language" resume_cv_key_name = f"{args.model.replace('/', '_')}_is_resume_cv" result_attributes = {resume_cv_key_name: [], language_key_name: []} # If pdf_page_numbers is present, split the text and process each page separately if "attributes" in dolma_doc and "pdf_page_numbers" in dolma_doc["attributes"]: page_numbers = dolma_doc["attributes"]["pdf_page_numbers"] logger.info(f"Document {doc_id} has {len(page_numbers)} pages, processing each individually") # Filter pages down to actual real content selected_page_numbers = [tuple(p) for p in page_numbers if p[0] < p[1]] first_page_number = selected_page_numbers[0] # Sample 3 pages max per document, but always include the first page, it's a good signal for CV classification random.shuffle(selected_page_numbers) selected_page_numbers = selected_page_numbers[:3] if first_page_number not in selected_page_numbers: selected_page_numbers[0] = first_page_number for start_pos, end_pos, page_num in page_numbers: if (start_pos, end_pos, page_num) in selected_page_numbers: page_text = text[start_pos:end_pos] # Process each page with the semaphore to limit concurrent requests async with sem: pii_class = await _process_single_page(page_text) result_attributes[resume_cv_key_name].append([start_pos, end_pos, pii_class.is_resume_cv]) result_attributes[language_key_name].append([start_pos, end_pos, pii_class.primary_language]) else: result_attributes[resume_cv_key_name].append([start_pos, end_pos, None]) result_attributes[language_key_name].append([start_pos, end_pos, None]) return result_attributes else: raise NotImplementedError("Missing code here, expecting this to be dolma docs made by olmocr....") async def process_file(args, worker_id: int, file_uri: str): """ Download a JSONL file, query model per record, and collect attributes. """ # Fetch raw bytes (S3 or local) if file_uri.startswith("s3://"): raw = await asyncio.to_thread(get_s3_bytes_with_backoff, dataset_s3, file_uri) else: with open(file_uri, "rb") as f: raw = f.read() # Decompress if needed if file_uri.endswith(".gz"): file_bytes = gzip.decompress(raw) elif file_uri.endswith(".ztd") or file_uri.endswith(".zst") or file_uri.endswith(".zstd"): dctx = zstd.ZstdDecompressor() file_bytes = dctx.decompress(raw, max_output_size=1_000_000_000) else: file_bytes = raw lines = file_bytes.decode("utf-8").splitlines() page_tasks = {} # Send all records in parallel, max N queued at a time sem = asyncio.Semaphore(args.parallel_requests) async with asyncio.TaskGroup() as tg: for line in lines: dolma_doc = json.loads(line) task = tg.create_task(process_dolma_document(args, dolma_doc, sem)) page_tasks[dolma_doc["id"]] = (task, dolma_doc) logger.info(f"Finished taskgroup with {len(page_tasks)} items for {file_uri}") # Collect results and build attributes attributes = [] for doc_id, (task, dolma_doc) in page_tasks.items(): doc_attributes = task.result() attributes.append({"id": doc_id, "attributes": doc_attributes}) return attributes async def worker(args, work_queue: WorkQueue, semaphore: asyncio.Semaphore, worker_id: int): """ Pop work-items off the queue, run PII tagging, write the attributes file next to the dataset (keeping the original compression), mark the item done, and drop an empty sentinel file in /results/. """ while True: await semaphore.acquire() work_item = await work_queue.get_work() if work_item is None: logger.info(f"Worker {worker_id} exiting – queue empty") semaphore.release() break file_uri = work_item.work_paths[0] logger.info(f"Worker {worker_id} processing {file_uri}") try: # ------------------------------------------------------------------ # Run the per-file pipeline # ------------------------------------------------------------------ attributes = await process_file(args, worker_id, file_uri) # 1. Build the relative path that mirrors documents/… if file_uri.startswith("s3://"): _, key = parse_s3_path(file_uri) _, docs_prefix = parse_s3_path(args.dataset) rel_path = key[len(os.path.join(docs_prefix, "documents/")) :] else: docs_root = os.path.join(args.dataset, "documents") rel_path = os.path.relpath(file_uri, docs_root) out_rel = os.path.join("attributes", args.attribute_name, rel_path) out_jsonl = "\n".join(json.dumps(x) for x in attributes) + "\n" # 2. Preserve compression type if rel_path.endswith(".gz"): payload = gzip.compress(out_jsonl.encode("utf-8")) elif rel_path.endswith((".zst", ".ztd")): payload = zstd.ZstdCompressor().compress(out_jsonl.encode("utf-8")) else: payload = out_jsonl.encode("utf-8") # 3. Write to args.dataset (local or S3) if args.dataset.startswith("s3://"): bucket, prefix = parse_s3_path(args.dataset) key = os.path.join(prefix, out_rel) workspace_s3.put_object(Bucket=bucket, Key=key, Body=payload) else: out_path = os.path.join(args.dataset, out_rel) os.makedirs(os.path.dirname(out_path), exist_ok=True) with open(out_path, "wb") as fh: fh.write(payload) # 4. Mark queue item done await work_queue.mark_done(work_item) # 5. Drop empty sentinel file in /results/ sentinel_rel = os.path.join("results", f"output_{work_item.hash}.jsonl") if args.scratch.startswith("s3://"): bkt, pfx = parse_s3_path(args.scratch) key = os.path.join(pfx, sentinel_rel) workspace_s3.put_object(Bucket=bkt, Key=key, Body=b"") else: sentinel_path = os.path.join(args.scratch, sentinel_rel) os.makedirs(os.path.dirname(sentinel_path), exist_ok=True) open(sentinel_path, "w").close() except Exception as exc: logger.exception(f"Worker {worker_id} exception: {exc!s}") finally: semaphore.release() async def server_task(model_name_or_path, args, semaphore): # Check GPU memory, lower mem devices need a bit less KV cache space because the VLM takes additional memory # mem_fraction_arg = ["--mem-fraction-static", "0.80"] cmd = [ "vllm", "serve", model_name_or_path, "--port", str(SERVER_PORT), "--uvicorn-log-level", "warning", "--disable-log-requests", ] proc = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) # Ensure the subprocess is terminated on exit def _kill_proc(): proc.terminate() atexit.register(_kill_proc) # Shared variables between tasks last_running_req, last_queue_req = 0, 0 server_printed_ready_message = False last_semaphore_release = time.time() async def process_line(line): nonlocal last_running_req, last_queue_req, last_semaphore_release, server_printed_ready_message server_logger.info(line) # if the server hasn't initialized yet, log all the lines to the main logger also, so that the user # can see any warnings/errors more easily if not server_printed_ready_message: logger.info(line) if not server_printed_ready_message and "The server is fired up and ready to roll!" in line: server_printed_ready_message = True last_semaphore_release = time.time() match = re.search(r"Running: (\d+) reqs", line) if match: last_running_req = int(match.group(1)) match = re.search(r"Waiting: (\d+) reqs", line) if match: last_queue_req = int(match.group(1)) logger.info(f"running req: {last_running_req} queue req: {last_queue_req}") async def read_stream(stream): while True: line = await stream.readline() if not line: break try: line = line.decode("utf-8").rstrip() await process_line(line) except Exception as ex: logger.warning(f"Got {ex} when reading log line from inference server, skipping") async def timeout_task(): nonlocal last_running_req, last_queue_req, last_semaphore_release try: while True: await asyncio.sleep(1) if server_printed_ready_message and last_queue_req == 0 and time.time() - last_semaphore_release > 30 and semaphore.locked(): semaphore.release() last_semaphore_release = time.time() logger.info("Semaphore released, allowing a worker to proceed.") except asyncio.CancelledError: pass # Clean up if the task is cancelled # Start tasks to read stdout, stderr, and handle timeout logic stdout_task = asyncio.create_task(read_stream(proc.stdout)) stderr_task = asyncio.create_task(read_stream(proc.stderr)) timeout_task = asyncio.create_task(timeout_task()) try: await proc.wait() except asyncio.CancelledError: logger.info("Got cancellation request for server") proc.terminate() raise timeout_task.cancel() await asyncio.gather(stdout_task, stderr_task, timeout_task, return_exceptions=True) async def server_host(model_name_or_path, args, semaphore): MAX_RETRIES = 5 retry = 0 while retry < MAX_RETRIES: await server_task(model_name_or_path, args, semaphore) logger.warning("Server task ended") retry += 1 if retry >= MAX_RETRIES: logger.error(f"Ended up starting the server more than {retry} times, cancelling pipeline") logger.error("") logger.error("Please make sure vllm is installed according to the latest instructions for 0.8.4") sys.exit(1) async def check_server_ready(): max_attempts = 300 delay_sec = 1 url = f"http://localhost:{SERVER_PORT}/v1/models" for attempt in range(1, max_attempts + 1): try: async with httpx.AsyncClient() as session: response = await session.get(url) if response.status_code == 200: logger.info("server is ready.") return else: logger.info(f"Attempt {attempt}: Unexpected status code {response.status_code}") except Exception: logger.warning(f"Attempt {attempt}: Please wait for model server to become ready...") await asyncio.sleep(delay_sec) raise Exception("model server did not become ready after waiting.") async def download_model(model_name_or_path: str): if model_name_or_path.startswith("s3://") or model_name_or_path.startswith("gs://") or model_name_or_path.startswith("weka://"): logger.info(f"Downloading model directory from '{model_name_or_path}'") model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "olmocr", "model") download_directory([model_name_or_path], model_cache_dir) return model_cache_dir elif os.path.isabs(model_name_or_path) and os.path.isdir(model_name_or_path): logger.info(f"Using local model path at '{model_name_or_path}'") return model_name_or_path else: logger.info(f"Downloading model with hugging face '{model_name_or_path}'") snapshot_download(repo_id=model_name_or_path) return model_name_or_path async def metrics_reporter(work_queue): while True: # Leading newlines preserve table formatting in logs logger.info(f"Queue remaining: {work_queue.size}") logger.info("\n" + str(metrics)) await asyncio.sleep(10) def submit_beaker_job(args): from beaker import ( # type: ignore Beaker, Constraints, EnvVar, ExperimentSpec, ImageSource, Priority, ResultSpec, SecretNotFound, TaskContext, TaskResources, TaskSpec, ) b = Beaker.from_env(default_workspace=args.beaker_workspace) account = b.account.whoami() owner = account.name beaker_image = f"jakep/olmocr-tagging-{VERSION}" task_name = f"olmocr-{os.path.basename(args.dataset.rstrip('/'))}" # Take out --beaker flag so the workers will just run things args_list = [arg for arg in sys.argv[1:] if arg != "--beaker"] # Take out the --pdfs [arg] or --pdfs=[arg], since the queue is populated locally args_list = [arg for i, arg in enumerate(args_list) if not (arg.startswith("--pdfs") or (i > 0 and args_list[i - 1] == "--pdfs"))] try: b.secret.get(f"{owner}-WEKA_ACCESS_KEY_ID", args.beaker_workspace) b.secret.get(f"{owner}-WEKA_SECRET_ACCESS_KEY", args.beaker_workspace) b.secret.get(f"{owner}-AWS_CREDENTIALS_FILE", args.beaker_workspace) except SecretNotFound: print( f"Expected beaker secrets for accessing Weka and S3 are not found. Are you okay to write those to your beaker workspace {args.beaker_workspace}? [y/n]" ) if input().strip().lower() != "y": print("Exiting...") sys.exit(1) b.secret.write(f"{owner}-WEKA_ACCESS_KEY_ID", os.environ.get("WEKA_ACCESS_KEY_ID", ""), args.beaker_workspace) b.secret.write(f"{owner}-WEKA_SECRET_ACCESS_KEY", os.environ.get("WEKA_SECRET_ACCESS_KEY", ""), args.beaker_workspace) b.secret.write( f"{owner}-AWS_CREDENTIALS_FILE", open(os.path.join(os.path.expanduser("~"), ".aws", "credentials")).read(), args.beaker_workspace, ) env_var_secrets = [ EnvVar(name="WEKA_ACCESS_KEY_ID", secret=f"{owner}-WEKA_ACCESS_KEY_ID"), EnvVar(name="WEKA_SECRET_ACCESS_KEY", secret=f"{owner}-WEKA_SECRET_ACCESS_KEY"), EnvVar(name="AWS_CREDENTIALS_FILE", secret=f"{owner}-AWS_CREDENTIALS_FILE"), ] try: b.secret.get("OLMOCR_PREVIEW_HF_TOKEN", args.beaker_workspace) env_var_secrets.append(EnvVar(name="HF_TOKEN", secret="OLMOCR_PREVIEW_HF_TOKEN")) except SecretNotFound: pass try: b.secret.get("OE_DATA_GCS_SA_KEY", args.beaker_workspace) env_var_secrets.append(EnvVar(name="GOOGLE_APPLICATION_CREDENTIALS_FILE", secret="OE_DATA_GCS_SA_KEY")) except SecretNotFound: print("Input the olmo-gcs SA key if you would like to load weights from gcs (end with a double newline):") lines = [] prev_empty = False for line in iter(input, None): if not line and prev_empty: break prev_empty = not line lines.append(line) gcs_sa_key = "\n".join(lines[:-1]).strip() # Remove the last empty line if gcs_sa_key: b.secret.write("OE_DATA_GCS_SA_KEY", gcs_sa_key, args.beaker_workspace) env_var_secrets.append(EnvVar(name="GOOGLE_APPLICATION_CREDENTIALS_FILE", secret="OE_DATA_GCS_SA_KEY")) # Create the experiment spec experiment_spec = ExperimentSpec( budget="ai2/oe-data", description=task_name, tasks=[ TaskSpec( name=task_name, propagate_failure=False, propagate_preemption=False, replicas=args.beaker_gpus, context=TaskContext( priority=Priority(args.beaker_priority), preemptible=True, ), image=ImageSource(beaker=beaker_image), command=["python", "scripts/tagging_pipeline.py"] + args_list, env_vars=[EnvVar(name="BEAKER_JOB_NAME", value=task_name), EnvVar(name="OWNER", value=owner)] + env_var_secrets, resources=TaskResources(gpu_count=1), constraints=Constraints(cluster=args.beaker_cluster if isinstance(args.beaker_cluster, list) else [args.beaker_cluster]), result=ResultSpec(path="/noop-results"), ) ], ) experiment_data = b.experiment.create(spec=experiment_spec, workspace=args.beaker_workspace) print(f"Experiment URL: https://beaker.org/ex/{experiment_data.id}") async def main(): parser = argparse.ArgumentParser(description="Tagging pipeline for Dolma JSONL dataset") parser.add_argument("dataset", help="Dolma dataset root (local or s3://) with documents/ folder") parser.add_argument("scratch", help="Scratch workspace (local dir or s3://)") parser.add_argument("--workers", type=int, default=4, help="Number of concurrent workers") parser.add_argument("--parallel_requests", type=int, default=800, help="Max number of parallel requests to send to model") parser.add_argument("--model", default="google/gemma-3-4b-it", help="Model path or name, hugging face or local path format") parser.add_argument("--attribute_name", default="model_pii_tagging", help="Path to use for attribute naming") # Beaker/job running stuff parser.add_argument("--beaker", action="store_true", help="Submit this job to beaker instead of running locally") parser.add_argument("--beaker_workspace", help="Beaker workspace to submit to", default="ai2/olmocr") parser.add_argument( "--beaker_cluster", help="Beaker clusters you want to run on", default=["ai2/jupiter-cirrascale-2", "ai2/ceres-cirrascale", "ai2/neptune-cirrascale", "ai2/saturn-cirrascale", "ai2/augusta-google-1"], ) parser.add_argument("--beaker_gpus", type=int, default=1, help="Number of gpu replicas to run") parser.add_argument("--beaker_priority", type=str, default="normal", help="Beaker priority level for the job") parser.add_argument("--port", type=int, default=30024, help="Port for Model server") args = parser.parse_args() global SERVER_PORT, workspace_s3, dataset_s3 SERVER_PORT = args.port workspace_s3 = boto3.client("s3") dataset_s3 = boto3.client("s3") # setup the job to work in beaker environment, load secrets, adjust logging, etc. if "BEAKER_JOB_ID" in os.environ: server_logger.addHandler(console_handler) if "AWS_CREDENTIALS_FILE" in os.environ: cred_path = os.path.join(os.path.expanduser("~"), ".aws", "credentials") os.makedirs(os.path.dirname(cred_path), exist_ok=True) with open(cred_path, "w") as f: f.write(os.environ.get("AWS_CREDENTIALS_FILE")) if "GOOGLE_APPLICATION_CREDENTIALS" in os.environ: cred_path = os.path.join(os.path.expanduser("~"), ".gcs", "credentials") os.makedirs(os.path.dirname(cred_path), exist_ok=True) with open(cred_path, "w") as f: f.write(os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_FILE")) os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = cred_path workspace_s3 = boto3.client("s3") dataset_s3 = boto3.client("s3") # Wait a little bit so that not all beaker jobs in a task start at the same time and download the model at the same time replica_count = int(os.environ.get("BEAKER_REPLICA_COUNT", "1")) interval = 10 if (replica_count - 1) * 10 <= 240 else 240 / max(1, replica_count - 1) sleep_time = int(int(os.environ.get("BEAKER_REPLICA_RANK", "0")) * interval) logger.info(f"Beaker job sleeping for {sleep_time} seconds to stagger model downloads") await asyncio.sleep(sleep_time) # Initialize work queue if args.scratch.startswith("s3://"): work_queue = S3WorkQueue(workspace_s3, args.scratch) else: work_queue = LocalWorkQueue(args.scratch) # Discover input files files = set() if args.dataset.startswith("s3://"): pattern = args.dataset.rstrip("/") + "/documents/*.jsonl*" matched = expand_s3_glob(dataset_s3, pattern) files = set(matched.keys()) else: docs_dir = os.path.join(args.dataset, "documents") for root, _, fns in os.walk(docs_dir): for fn in fns: if fn.endswith((".jsonl", ".jsonl.gz", ".jsonl.ztd")): files.add(os.path.join(root, fn)) # Populate the work queue if needed await work_queue.populate_queue(list(files), items_per_group=1) if args.beaker: submit_beaker_job(args) return # If you get this far, then you are doing inference and need a GPU check_torch_gpu_available() logger.info(f"Starting pipeline with PID {os.getpid()}") # Download the model before you do anything else model_name_or_path = await download_model(args.model) # Initialize the work queue qsize = await work_queue.initialize_queue() if qsize == 0: logger.info("No work to do, exiting") return # Create a semaphore to control worker access # We only allow one worker to move forward with requests, until the server has no more requests in its queue # This lets us get full utilization by having many workers, but also to be outputting dolma docs as soon as possible # As soon as one worker is no longer saturating the gpu, the next one can start sending requests semaphore = asyncio.Semaphore(1) model_server = asyncio.create_task(server_host(model_name_or_path, args, semaphore)) await check_server_ready() metrics_task = asyncio.create_task(metrics_reporter(work_queue)) # Create worker tasks to process the queue concurrently. worker_tasks = [] for i in range(args.workers): task = asyncio.create_task(worker(args, work_queue, semaphore, worker_id=i)) worker_tasks.append(task) # Wait for all worker tasks to finish await asyncio.gather(*worker_tasks) model_server.cancel() metrics_task.cancel() logger.info("Work done") if __name__ == "__main__": asyncio.run(main())