import os import json import base64 import logging import time from io import BytesIO from PIL import Image from functools import partial from logging import Logger from pathlib import Path from tempfile import TemporaryDirectory from typing import Optional from tqdm import tqdm import torch import torch.distributed from accelerate import Accelerator from datasets.utils import disable_progress_bars from datasets.utils.logging import set_verbosity from peft import LoraConfig, get_peft_model # pyright: ignore from transformers import ( AutoModelForCausalLM, Trainer, TrainerCallback, TrainingArguments, Qwen2VLForConditionalGeneration, AutoProcessor ) from transformers.integrations import WandbCallback from transformers.trainer_callback import TrainerControl, TrainerState from transformers.trainer_utils import get_last_checkpoint from torch.utils.data import DataLoader import wandb from pdelfin.train.core.cli import make_cli, save_config, to_native_types from pdelfin.train.core.config import TrainConfig from pdelfin.train.core.loggers import get_logger from pdelfin.train.core.paths import copy_dir, join_path from pdelfin.train.core.state import BeakerState from .utils import ( RunName, get_local_dir, log_trainable_parameters, packing_collator, setup_environment, ) from pdelfin.train.dataloader import make_dataset from pdelfin.train.dataprep import batch_prepare_data_for_qwen2_training class CheckpointUploadCallback(TrainerCallback): def __init__(self, save_path: str, logger: Optional[Logger] = None): self.save_path = save_path self.logger = logger or get_logger(self.__class__.__name__) def on_save(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): if state.is_local_process_zero: latest_checkpoint = get_last_checkpoint(args.output_dir) if not latest_checkpoint: return dir_name = Path(latest_checkpoint).name copy_dir(str(latest_checkpoint), f"{self.save_path}/{dir_name}") self.logger.info("Saved checkpoint to %s", f"{self.save_path}/{dir_name}") def update_wandb_config(config: TrainConfig, trainer: Trainer, model: torch.nn.Module): # finding wandb callback callbacks = [c for c in trainer.callback_handler.callbacks if isinstance(c, WandbCallback)] # pyright: ignore if not callbacks: raise ValueError("WandbCallback not found in trainer callbacks") wandb_callback = callbacks[0] peft_config = to_native_types(getattr(model, "peft_config", {})) script_config = to_native_types(config) beaker_envs = {k: v for k, v in os.environ.items() if k.lower().startswith("beaker")} on_setup_fn = wandb_callback.setup def setup_and_update(args, state, model, **kwargs): on_setup_fn(args=args, state=state, model=model, **kwargs) wandb.config.update({"peft": peft_config}, allow_val_change=True) wandb.config.update({"script": script_config}, allow_val_change=True) wandb.config.update({"beaker": beaker_envs}, allow_val_change=True) if (run := wandb.run) and (beaker_url := BeakerState().url): run.notes = beaker_url wandb_callback.setup = setup_and_update def get_rank() -> int: if torch.distributed.is_available() and torch.distributed.is_initialized(): return torch.distributed.get_rank() return 0 def run_train(config: TrainConfig): if get_rank() == 0: logger_level = logging.INFO else: logger_level = logging.WARN disable_progress_bars() logger = get_logger(__name__, level=logger_level) set_verbosity(logger_level) run_name = RunName.get(config) setup_environment(aws_config=config.aws, wandb_config=config.wandb, WANDB_RUN_GROUP=run_name.group) dataset = make_dataset( train_data_config=config.train_data, valid_data_config=config.valid_data, num_proc=config.num_proc, logger=logger, ) model = Qwen2VLForConditionalGeneration.from_pretrained( config.model.name_or_path, torch_dtype=torch.bfloat16, _attn_implementation="flash_attention_2" if config.model.use_flash_attn else None ) processor = AutoProcessor.from_pretrained(config.model.name_or_path) if config.lora is not None: peft_config = LoraConfig( r=config.lora.rank, lora_alpha=config.lora.alpha, lora_dropout=config.lora.dropout, bias=config.lora.bias, # pyright: ignore task_type=config.lora.task_type, target_modules=list(config.lora.target_modules), ) model = get_peft_model(model=model, peft_config=peft_config) log_trainable_parameters(model=model, logger=logger) formatted_dataset = dataset.with_transform(partial(batch_prepare_data_for_qwen2_training, processor=processor)) print(formatted_dataset) print("---------------") save_path = join_path("", config.save.path, run_name.run) save_config(config, join_path("", save_path, "config.yaml")) # pyright: ignore train_dataloader = DataLoader(formatted_dataset["train"], batch_size=1, num_workers=4, shuffle=False) optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4) accelerator = Accelerator(mixed_precision="bf16") model, optimizer, train_dataloader = accelerator.prepare(model, optimizer, train_dataloader) steps = 0 for entry in tqdm(train_dataloader): print("Sequence len", entry["input_ids"].shape) with accelerator.accumulate(model): optimizer.zero_grad() outputs = model(**entry) loss = outputs.loss accelerator.backward(loss) optimizer.step() steps += 1 if accelerator.is_local_main_process: logger.info(f"step {steps}, training loss : {loss.item()}") def main(): train_config = make_cli(TrainConfig) # pyright: ignore run_train(train_config) if __name__ == "__main__": main()