import argparse import base64 import csv import datetime import json import os import random import re import sqlite3 import string import tempfile from concurrent.futures import ThreadPoolExecutor from pathlib import Path from typing import Optional import boto3 import tinyhost from tqdm import tqdm from olmocr.data.renderpdf import render_pdf_to_base64webp from olmocr.s3_utils import get_s3_bytes, parse_s3_path def parse_args(): parser = argparse.ArgumentParser(description="Scan OLMO OCR workspace results and create visual samples") parser.add_argument("workspace", help="OLMO OCR workspace path (s3://bucket/workspace)") parser.add_argument("--pages_per_output", type=int, default=30, help="Number of pages per output file") parser.add_argument("--repeats", type=int, default=1, help="Number of output files to generate") parser.add_argument("--pdf_profile", help="AWS profile for accessing PDFs") parser.add_argument("--output_dir", default="dolma_samples", help="Directory to save output HTML files") parser.add_argument("--max_workers", type=int, default=4, help="Maximum number of worker threads") parser.add_argument( "--db_path", default="~/s2pdf_url_data/d65142df-6588-4b68-a12c-d468b3761189.csv.db", help="Path to the SQLite database containing PDF hash to URL mapping", ) parser.add_argument( "--prolific_csv", default="prolific_codes.csv", help="Path to save the CSV file with Prolific codes", ) return parser.parse_args() def generate_prolific_code(length=8): """Generate a random code for Prolific.""" characters = string.ascii_uppercase + string.digits return "".join(random.choice(characters) for _ in range(length)) def obfuscate_code(code): """Gently obfuscate the Prolific code so it's not immediately visible in source.""" # Convert to base64 and reverse encoded = base64.b64encode(code.encode()).decode() return encoded[::-1] def deobfuscate_code(obfuscated_code): """Deobfuscate the code - this will be done in JavaScript.""" # Reverse and decode from base64 reversed_encoded = obfuscated_code[::-1] try: return base64.b64decode(reversed_encoded).decode() except: return "ERROR_DECODING" def parse_pdf_hash(pretty_pdf_path: str) -> Optional[str]: pattern = r"s3://ai2-s2-pdfs/([a-f0-9]{4})/([a-f0-9]+)\.pdf" match = re.match(pattern, pretty_pdf_path) if match: return match.group(1) + match.group(2) return None def get_original_url(pdf_hash: str, db_path: str) -> Optional[str]: """Look up the original URL for a PDF hash in the SQLite database.""" if not pdf_hash: return None try: sqlite_db_path = os.path.expanduser(db_path) if not os.path.exists(sqlite_db_path): print(f"SQLite database not found at {sqlite_db_path}") return None conn = sqlite3.connect(sqlite_db_path) cursor = conn.cursor() cursor.execute("SELECT uri FROM pdf_mapping WHERE pdf_hash = ?", (pdf_hash,)) result = cursor.fetchone() conn.close() if result: return result[0] return None except Exception as e: print(f"Error looking up URL for PDF hash {pdf_hash}: {e}") return None def list_result_files(s3_client, workspace_path): """List all JSON result files in the workspace results directory.""" bucket, prefix = parse_s3_path(workspace_path) results_prefix = os.path.join(prefix, "results").rstrip("/") + "/" all_files = [] paginator = s3_client.get_paginator("list_objects_v2") for page in paginator.paginate(Bucket=bucket, Prefix=results_prefix): if "Contents" in page: all_files.extend([f"s3://{bucket}/{obj['Key']}" for obj in page["Contents"] if obj["Key"].endswith(".jsonl") or obj["Key"].endswith(".json")]) if len(all_files) > 1000: break return all_files def get_random_pages(s3_client, result_files, count=30): """Get random pages from the result files.""" random_pages = [] # Try to collect the requested number of pages attempts = 0 max_attempts = count * 3 # Allow extra attempts to handle potential failures while len(random_pages) < count and attempts < max_attempts: attempts += 1 # Pick a random result file if not result_files: print("No result files found!") break result_file = random.choice(result_files) try: # Get the content of the file content = get_s3_bytes(s3_client, result_file) lines = content.decode("utf-8").strip().split("\n") if not lines: continue # Pick a random line (which contains a complete document) line = random.choice(lines) doc = json.loads(line) # A Dolma document has "text", "metadata", and "attributes" fields if "text" not in doc or "metadata" not in doc or "attributes" not in doc: print(f"Document in {result_file} is not a valid Dolma document") continue # Get the original PDF path from metadata pdf_path = doc["metadata"].get("Source-File") if not pdf_path: continue # Get page spans from attributes page_spans = doc["attributes"].get("pdf_page_numbers", []) if not page_spans: continue # Pick a random page span page_span = random.choice(page_spans) if len(page_span) >= 3: # Page spans are [start_pos, end_pos, page_num] page_num = page_span[2] # Extract text for this page start_pos, end_pos = page_span[0], page_span[1] page_text = doc["text"][start_pos:end_pos].strip() # Include the text snippet with the page info random_pages.append((pdf_path, page_num, page_text, result_file)) if len(random_pages) >= count: break except Exception as e: print(f"Error processing {result_file}: {e}") continue print(f"Found {len(random_pages)} random pages from Dolma documents") return random_pages def create_presigned_url(s3_client, pdf_path, expiration=3600 * 24 * 7): """Create a presigned URL for the given S3 path.""" try: bucket, key = parse_s3_path(pdf_path) url = s3_client.generate_presigned_url("get_object", Params={"Bucket": bucket, "Key": key}, ExpiresIn=expiration) return url except Exception as e: print(f"Error creating presigned URL for {pdf_path}: {e}") return None def create_html_output(random_pages, pdf_s3_client, output_path, workspace_path, db_path, prolific_code, resolution=2048): """Create an HTML file with rendered PDF pages.""" # Obfuscate the provided Prolific code obfuscated_code = obfuscate_code(prolific_code) # Get current date and time for the report current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") html_content = f"""
Instructions: Please review each document below and mark if it contains PII (Personally identifiable information). If you cannot read it (ex. the document is not in English, or is otherwise unreadable), mark it as such. If the document contains disturbing or graphic content, please mark that. Finally, if there is PII, type in a brief description and press Enter. Once you mark all 30 documents, the completetion code will be presented.
Information that identifies a data subject without further context
Information that can be used to identify a data subject in context or in combination with other information