import unittest from functools import partial import pytest from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoProcessor from olmocr.train.dataloader import ( build_finetuning_dataset, extract_openai_batch_response, list_dataset_files, load_jsonl_into_ds, ) from olmocr.train.dataprep import batch_prepare_data_for_qwen2_training @pytest.mark.nonci class TestBatchQueryResponseDataset(unittest.TestCase): def testLoadS3(self): ds = load_jsonl_into_ds("s3://ai2-oe-data/jakep/openai_batch_data_v2/*.jsonl", first_n_files=3) print(f"Loaded {len(ds)} entries") print(ds) print(ds["train"]) def testFinetuningDS(self): ds = build_finetuning_dataset( response_glob_path="s3://ai2-oe-data/jakep/pdfdata/openai_batch_done_v5_1_eval/*.json", ) print(ds) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") ds = ds.with_transform(partial(batch_prepare_data_for_qwen2_training, processor=processor, target_longest_image_dim=1024, target_anchor_text_len=6000)) print(ds[0]) def testPlotSequenceLengthHistogram(self): import plotly.express as px ds = build_finetuning_dataset( response_glob_path="s3://ai2-oe-data/jakep/pdfdata/openai_batch_done_v5_1_eval/*.json", ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") ds = ds.with_transform(partial(batch_prepare_data_for_qwen2_training, processor=processor, target_longest_image_dim=1024, target_anchor_text_len=6000)) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") initial_len = len(ds) train_dataloader = DataLoader(ds, batch_size=1, num_workers=30, shuffle=False) max_seen_len = 0 steps = 0 sequence_lengths = [] # List to store sequence lengths for entry in tqdm(train_dataloader): num_input_tokens = entry["input_ids"].shape[1] max_seen_len = max(max_seen_len, num_input_tokens) sequence_lengths.append(num_input_tokens) # Collecting sequence lengths if steps % 100 == 0: print(f"Max input len {max_seen_len}") steps += 1 # model.forward(**{k: v.to("cuda:0") for (k,v) in entry.items()}) print(f"Max input len {max_seen_len}") print(f"Total elements before filtering: {initial_len}") print(f"Total elements after filtering: {steps}") # Plotting the histogram using Plotly fig = px.histogram( sequence_lengths, nbins=100, title="Distribution of Input Sequence Lengths", labels={"value": "Sequence Length", "count": "Frequency"} ) fig.write_image("sequence_lengths_histogram.png")