#!/bin/bash set -e # Parse beaker-specific arguments SKIP_DOCKER_BUILD=false PREEMPTIBLE=false EXP_NAME="" # Store all arguments to pass to python command PYTHON_ARGS=() while [[ $# -gt 0 ]]; do case $1 in --skip-docker-build) SKIP_DOCKER_BUILD=true shift ;; --preemptible) PREEMPTIBLE=true shift ;; --name) EXP_NAME="$2" shift 2 ;; --help|-h) echo "Usage: $0 [beaker-options] [grpo-training-options]" echo "" echo "Beaker-specific options:" echo " --skip-docker-build Skip Docker build" echo " --preemptible Use preemptible instances" echo " --name NAME Experiment name (used in output directory)" echo "" echo "All other arguments are forwarded to python -m olmocr.train.grpo_train" echo "Run 'python -m olmocr.train.grpo_train --help' to see available training options" exit 0 ;; *) # Store all other arguments to pass to python command PYTHON_ARGS+=("$1") shift ;; esac done echo "Preemptible: $PREEMPTIBLE" echo "Skip Docker Build: $SKIP_DOCKER_BUILD" echo "Arguments to forward: ${PYTHON_ARGS[@]}" # Use conda environment Python if available, otherwise use system Python if [ -n "$CONDA_PREFIX" ]; then PYTHON="$CONDA_PREFIX/bin/python" echo "Using conda Python from: $CONDA_PREFIX" else PYTHON="python" echo "Warning: No conda environment detected, using system Python" fi # Get version from version.py VERSION=$($PYTHON -c 'import olmocr.version; print(olmocr.version.VERSION)') echo "OlmOCR version: $VERSION" # Get first 10 characters of git hash GIT_HASH=$(git rev-parse HEAD | cut -c1-10) echo "Git hash: $GIT_HASH" # Get current git branch name GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD) echo "Git branch: $GIT_BRANCH" # Create full image tag IMAGE_TAG="olmocr-grpo-${VERSION}-${GIT_HASH}" echo "Building Docker image with tag: $IMAGE_TAG" # Build and push Docker image if not skipping if [ "$SKIP_DOCKER_BUILD" = false ]; then echo "Building Docker image..." docker build --platform linux/amd64 -f ./Dockerfile -t $IMAGE_TAG . # Push image to beaker echo "Trying to push image to Beaker..." if ! beaker image create --workspace ai2/oe-data-pdf --name $IMAGE_TAG $IMAGE_TAG 2>/dev/null; then echo "Warning: Beaker image with tag $IMAGE_TAG already exists. Using existing image." fi else echo "Skipping Docker build as requested" fi # Get Beaker username BEAKER_USER=$(beaker account whoami --format json | jq -r '.[0].name') echo "Beaker user: $BEAKER_USER" # Create Python script to run beaker experiment cat << 'EOF' > /tmp/run_grpo_experiment.py import sys import shlex import os from beaker import Beaker, ExperimentSpec, TaskSpec, TaskContext, ResultSpec, TaskResources, ImageSource, Priority, Constraints, EnvVar, DataMount # Get parameters from command line image_tag = sys.argv[1] beaker_user = sys.argv[2] git_branch = sys.argv[3] git_hash = sys.argv[4] preemptible = sys.argv[5] == "true" exp_name = sys.argv[6] # Empty string if not provided # All remaining arguments are the python command arguments python_args = sys.argv[7:] # Initialize Beaker client b = Beaker.from_env(default_workspace="ai2/olmocr") # Build the training command commands = [ # Install dependencies "pip install .[train]", "pip install trl wandb", "pip install transformers==4.55.2", # Updated for GRPO compatibility "pip install flash-attn==2.8.0.post2 --no-build-isolation", "pip install vllm==v0.10.1.1", "pip install s5cmd", # Sync the bench data from S3 "echo 'Syncing bench data from S3...'", "mkdir -p /data/olmOCR-bench", "s5cmd sync 's3://ai2-oe-data/jakep/olmocr/olmOCR-bench-snapshot-082225/*' /data/olmOCR-bench/", "s5cmd sync 's3://ai2-oe-data/jakep/grpo_data_mixes/*' /data/jakep/grpo_data_mixes/", # Build GRPO training command "echo 'Starting GRPO training...'", ] # Check if model_name is an S3 path and handle it model_sync_commands = [] modified_args = list(python_args) for i in range(len(modified_args)): if modified_args[i] == "--model_name" and i + 1 < len(modified_args): model_path = modified_args[i + 1].rstrip('/') if model_path.startswith("s3://"): # Extract checkpoint name from S3 path (last part of path) checkpoint_name = model_path.split('/')[-1] local_model_path = f"/data/models/{checkpoint_name}" # Create sync commands model_sync_commands = [ f"echo 'Syncing model from S3: {model_path}'", "mkdir -p /data/models", f"s5cmd sync '{model_path}/*' '{local_model_path}/'", ] # Replace S3 path with local path in arguments modified_args[i + 1] = local_model_path break # Add model sync commands if needed commands.extend(model_sync_commands) # Build the python command with forwarded arguments # Add default paths if not provided in arguments grpo_cmd = ["python -m olmocr.train.grpo_train"] # Check if certain required arguments are in the provided args, add defaults if not arg_str = " ".join(modified_args) if "--train_bench_data_folder" not in arg_str: grpo_cmd.append("--train_bench_data_folder /data/olmOCR-bench/bench_data") if "--eval_bench_data_folder" not in arg_str: grpo_cmd.append("--eval_bench_data_folder /data/olmOCR-bench/bench_data") if "--output_dir" not in arg_str: output_dir = "/weka/oe-training-default/jakep/olmocr-grpo-checkpoints" # Build subdirectory based on exp_name and BEAKER_WORKLOAD_ID beaker_workload_id = os.environ.get("BEAKER_WORKLOAD_ID") if exp_name and beaker_workload_id: output_dir = f"{output_dir}/{exp_name}-{beaker_workload_id}" elif beaker_workload_id: output_dir = f"{output_dir}/{beaker_workload_id}" elif exp_name: output_dir = f"{output_dir}/{exp_name}" grpo_cmd.append(f"--output_dir {output_dir}") # Add all the (possibly modified) arguments grpo_cmd.extend(modified_args) # Add the GRPO command to the commands list commands.append(" ".join(grpo_cmd)) # Extract model name from arguments if provided (for description) model_name = "Unknown" for i, arg in enumerate(modified_args): if arg in ["--model_name", "--model"]: if i + 1 < len(modified_args): model_name = modified_args[i + 1] break # Build task spec task_spec = TaskSpec( name="olmocr-grpo-training", image=ImageSource(beaker=f"{beaker_user}/{image_tag}"), command=[ "bash", "-c", " && ".join(commands) ], context=TaskContext( priority=Priority.normal, preemptible=preemptible, ), resources=TaskResources( gpu_count=1, shared_memory="10GiB" ), constraints=Constraints(cluster=["ai2/titan-cirrascale"]), result=ResultSpec(path="/noop-results"), env_vars=[ EnvVar(name="LOG_FILTER_TYPE", value="local_rank0_only"), EnvVar(name="OMP_NUM_THREADS", value="8"), EnvVar(name="BEAKER_USER_ID", value=beaker_user), EnvVar(name="AWS_ACCESS_KEY_ID", secret="ALLENNLP_AWS_ACCESS_KEY_ID"), EnvVar(name="AWS_SECRET_ACCESS_KEY", secret="ALLENNLP_AWS_SECRET_ACCESS_KEY"), EnvVar(name="WANDB_API_KEY", secret="JAKE_WANDB_API_KEY"), ], datasets=[ DataMount.new(mount_path="/weka/oe-data-default", weka="oe-data-default"), DataMount.new(mount_path="/weka/oe-training-default", weka="oe-training-default"), ] ) # Create experiment spec experiment_spec = ExperimentSpec( description=f"OlmOCR GRPO Training - Model: {model_name}, Branch: {git_branch}, Commit: {git_hash}", budget="ai2/oe-base", tasks=[task_spec], ) # Create the experiment experiment = b.experiment.create(spec=experiment_spec, workspace="ai2/olmocr") print(f"Created GRPO training experiment: {experiment.id}") print(f"View at: https://beaker.org/ex/{experiment.id}") EOF # Run the Python script to create the experiment echo "Creating Beaker GRPO experiment..." $PYTHON /tmp/run_grpo_experiment.py \ "$IMAGE_TAG" \ "$BEAKER_USER" \ "$GIT_BRANCH" \ "$GIT_HASH" \ "$PREEMPTIBLE" \ "$EXP_NAME" \ "${PYTHON_ARGS[@]}" # Clean up temporary file rm /tmp/run_grpo_experiment.py echo "GRPO training experiment submitted successfully!"