import os import glob import posixpath import logging import tempfile import boto3 import requests import concurrent.futures from urllib.parse import urlparse from pathlib import Path from google.auth import compute_engine from google.cloud import storage from botocore.config import Config from botocore.exceptions import NoCredentialsError from typing import Optional from urllib.parse import urlparse import zstandard as zstd from io import BytesIO, TextIOWrapper from tqdm import tqdm logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def parse_s3_path(s3_path: str) -> tuple[str, str]: if not (s3_path.startswith('s3://') or s3_path.startswith('gs://') or s3_path.startswith('weka://')): raise ValueError('s3_path must start with s3://, gs://, or weka://') parsed = urlparse(s3_path) bucket = parsed.netloc key = parsed.path.lstrip('/') return bucket, key def expand_s3_glob(s3_client, s3_glob: str) -> dict[str, str]: parsed = urlparse(s3_glob) bucket_name = parsed.netloc prefix = os.path.dirname(parsed.path.lstrip('/')).rstrip('/') + "/" pattern = os.path.basename(parsed.path) paginator = s3_client.get_paginator('list_objects_v2') page_iterator = paginator.paginate(Bucket=bucket_name, Prefix=prefix) matched_files = {} for page in page_iterator: for obj in page.get('Contents', []): key = obj['Key'] if glob.fnmatch.fnmatch(key, posixpath.join(prefix, pattern)): matched_files[f"s3://{bucket_name}/{key}"] = obj['ETag'].strip('"') return matched_files def get_s3_bytes(s3_client, s3_path: str, start_index: Optional[int] = None, end_index: Optional[int] = None) -> bytes: bucket, key = parse_s3_path(s3_path) # Build the range header if start_index and/or end_index are specified range_header = None if start_index is not None and end_index is not None: # Range: bytes=start_index-end_index range_value = f"bytes={start_index}-{end_index}" range_header = {'Range': range_value} elif start_index is not None and end_index is None: # Range: bytes=start_index- range_value = f"bytes={start_index}-" range_header = {'Range': range_value} elif start_index is None and end_index is not None: # Range: bytes=-end_index (last end_index bytes) range_value = f"bytes=-{end_index}" range_header = {'Range': range_value} if range_header: obj = s3_client.get_object(Bucket=bucket, Key=key, Range=range_header['Range']) else: obj = s3_client.get_object(Bucket=bucket, Key=key) return obj['Body'].read() def put_s3_bytes(s3_client, s3_path: str, data: bytes): bucket, key = parse_s3_path(s3_path) s3_client.put_object( Bucket=bucket, Key=key, Body=data, ContentType='text/plain; charset=utf-8' ) def parse_custom_id(custom_id: str) -> tuple[str, int]: s3_path = custom_id[:custom_id.rindex("-")] page_num = int(custom_id[custom_id.rindex("-") + 1:]) return s3_path, page_num def download_zstd_csv(s3_client, s3_path): """Download and decompress a .zstd CSV file from S3.""" try: compressed_data = get_s3_bytes(s3_client, s3_path) dctx = zstd.ZstdDecompressor() decompressed = dctx.decompress(compressed_data) text_stream = TextIOWrapper(BytesIO(decompressed), encoding='utf-8') lines = text_stream.readlines() logger.info(f"Downloaded and decompressed {s3_path}") return lines except s3_client.exceptions.NoSuchKey: logger.info(f"No existing {s3_path} found in s3, starting fresh.") return [] def upload_zstd_csv(s3_client, s3_path, lines): """Compress and upload a list of lines as a .zstd CSV file to S3.""" joined_text = "\n".join(lines) compressor = zstd.ZstdCompressor() compressed = compressor.compress(joined_text.encode('utf-8')) put_s3_bytes(s3_client, s3_path, compressed) logger.info(f"Uploaded compressed {s3_path}") def is_running_on_gcp(): """Check if the script is running on a Google Cloud Platform (GCP) instance.""" try: # GCP metadata server URL to check instance information response = requests.get( "http://metadata.google.internal/computeMetadata/v1/instance/", headers={"Metadata-Flavor": "Google"}, timeout=1 # Set a short timeout ) return response.status_code == 200 except requests.RequestException: return False def download_directory(model_choices: list[str], local_dir: str): """ Download the model to a specified local directory. The function will attempt to download from the first available source in the provided list. Supports Weka (weka://), Google Cloud Storage (gs://), and Amazon S3 (s3://) links. Args: model_choices (list[str]): List of model paths (weka://, gs://, or s3://). local_dir (str): Local directory path where the model will be downloaded. Raises: ValueError: If no valid model path is found in the provided choices. """ # Ensure the local directory exists local_path = Path(os.path.expanduser(local_dir)) local_path.mkdir(parents=True, exist_ok=True) logger.info(f"Local directory set to: {local_path}") # Reorder model_choices to prioritize weka:// links weka_choices = [path for path in model_choices if path.startswith("weka://")] other_choices = [path for path in model_choices if not path.startswith("weka://")] prioritized_choices = weka_choices + other_choices # Iterate through the provided choices and attempt to download from the first available source for model_path in prioritized_choices: logger.info(f"Attempting to download from: {model_path}") try: if model_path.startswith("weka://"): download_dir_from_weka(model_path, str(local_path)) logger.info(f"Successfully downloaded model from Weka: {model_path}") return elif model_path.startswith("gs://"): download_dir_from_gcs(model_path, str(local_path)) logger.info(f"Successfully downloaded model from Google Cloud Storage: {model_path}") return elif model_path.startswith("s3://"): download_dir_from_s3(model_path, str(local_path)) logger.info(f"Successfully downloaded model from S3: {model_path}") return else: logger.warning(f"Unsupported model path scheme: {model_path}") except Exception as e: logger.error(f"Failed to download from {model_path}: {e}") continue # Try the next available source raise ValueError("Failed to download the model from all provided sources.") def download_dir_from_gcs(gcs_path: str, local_dir: str): """Download model files from Google Cloud Storage to a local directory.""" client = storage.Client() bucket_name, prefix = parse_s3_path(gcs_path.replace("gs://", "s3://")) bucket = client.bucket(bucket_name) blobs = list(bucket.list_blobs(prefix=prefix)) total_files = len(blobs) logger.info(f"Found {total_files} files in GCS bucket '{bucket_name}' with prefix '{prefix}'.") with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] for blob in blobs: relative_path = os.path.relpath(blob.name, prefix) local_file_path = os.path.join(local_dir, relative_path) os.makedirs(os.path.dirname(local_file_path), exist_ok=True) futures.append(executor.submit(blob.download_to_filename, local_file_path)) # Use tqdm to display progress for _ in tqdm(concurrent.futures.as_completed(futures), total=total_files, desc="Downloading from GCS"): pass logger.info(f"Downloaded model from Google Cloud Storage to {local_dir}") def download_dir_from_s3(s3_path: str, local_dir: str): """Download model files from S3 to a local directory.""" boto3_config = Config( max_pool_connections=50 # Adjust this number based on your requirements ) s3_client = boto3.client('s3', config=boto3_config) bucket, prefix = parse_s3_path(s3_path) paginator = s3_client.get_paginator("list_objects_v2") pages = paginator.paginate(Bucket=bucket, Prefix=prefix) objects = [] for page in pages: if 'Contents' in page: objects.extend(page['Contents']) total_files = len(objects) logger.info(f"Found {total_files} files in S3 bucket '{bucket}' with prefix '{prefix}'.") with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] for obj in objects: key = obj["Key"] relative_path = os.path.relpath(key, prefix) local_file_path = os.path.join(local_dir, relative_path) os.makedirs(os.path.dirname(local_file_path), exist_ok=True) futures.append(executor.submit(s3_client.download_file, bucket, key, local_file_path)) # Use tqdm to display progress for _ in tqdm(concurrent.futures.as_completed(futures), total=total_files, desc="Downloading from S3"): pass logger.info(f"Downloaded model from S3 to {local_dir}") def download_dir_from_weka(weka_path: str, local_dir: str): """Download model files from Weka to a local directory.""" # Retrieve Weka credentials from environment variables weka_access_key = os.getenv("WEKA_ACCESS_KEY_ID") weka_secret_key = os.getenv("WEKA_SECRET_ACCESS_KEY") if not weka_access_key or not weka_secret_key: raise ValueError("WEKA_ACCESS_KEY_ID and WEKA_SECRET_ACCESS_KEY environment variables must be set for Weka access.") # Configure the boto3 client for Weka weka_endpoint = "https://weka-aus.beaker.org:9000" boto3_config = Config( max_pool_connections=50, # Adjust this number based on your requirements signature_version='s3v4', retries={'max_attempts': 10, 'mode': 'standard'} ) s3_client = boto3.client( 's3', endpoint_url=weka_endpoint, aws_access_key_id=weka_access_key, aws_secret_access_key=weka_secret_key, config=boto3_config ) bucket, prefix = parse_s3_path(weka_path) paginator = s3_client.get_paginator("list_objects_v2") try: pages = paginator.paginate(Bucket=bucket, Prefix=prefix) except s3_client.exceptions.NoSuchBucket: raise ValueError(f"The bucket '{bucket}' does not exist in Weka.") objects = [] for page in pages: if 'Contents' in page: objects.extend(page['Contents']) total_files = len(objects) logger.info(f"Found {total_files} files in Weka bucket '{bucket}' with prefix '{prefix}'.") with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] for obj in objects: key = obj["Key"] relative_path = os.path.relpath(key, prefix) local_file_path = os.path.join(local_dir, relative_path) os.makedirs(os.path.dirname(local_file_path), exist_ok=True) futures.append(executor.submit(s3_client.download_file, bucket, key, local_file_path)) # Use tqdm to display progress for _ in tqdm(concurrent.futures.as_completed(futures), total=total_files, desc="Downloading from Weka"): pass logger.info(f"Downloaded model from Weka to {local_dir}")