import unittest from unittest.mock import MagicMock, patch import hashlib import json # Adjust the import path to match where your code resides from pdelfin.birrpipeline import build_dolma_doc, DatabaseManager class TestBuildDolmaDoc(unittest.TestCase): @patch('pdelfin.birrpipeline.DatabaseManager') @patch('pdelfin.birrpipeline.get_s3_bytes') def test_build_dolma_doc_with_multiple_page_entries(self, mock_get_s3_bytes, mock_DatabaseManager): # Mock DatabaseManager instance mock_db_instance = MagicMock() mock_DatabaseManager.return_value = mock_db_instance # Define the PDF record pdf_s3_path = 's3://bucket/pdf/test.pdf' pdf = DatabaseManager.PDFRecord(s3_path=pdf_s3_path, num_pages=1, status='pending') # Create multiple BatchInferenceRecord entries for page_num=1 entry_a = DatabaseManager.BatchInferenceRecord( inference_s3_path='s3://bucket/inference/output1.jsonl', pdf_s3_path=pdf_s3_path, page_num=1, round=0, start_index=0, length=100, finish_reason='stop', error=None ) entry_b = DatabaseManager.BatchInferenceRecord( inference_s3_path='s3://bucket/inference/output2.jsonl', pdf_s3_path=pdf_s3_path, page_num=1, round=0, start_index=0, length=100, finish_reason='stop', error=None ) entry_c = DatabaseManager.BatchInferenceRecord( inference_s3_path='s3://bucket/inference/output3.jsonl', pdf_s3_path=pdf_s3_path, page_num=1, round=0, start_index=0, length=100, finish_reason='stop', error=None ) entry_d = DatabaseManager.BatchInferenceRecord( inference_s3_path='s3://bucket/inference/output4.jsonl', pdf_s3_path=pdf_s3_path, page_num=1, round=0, start_index=0, length=100, finish_reason='stop', error=None ) # Set up mock_db_instance.get_index_entries to return all entries mock_db_instance.get_index_entries.return_value = [entry_a, entry_b, entry_c, entry_d] # Define get_s3_bytes side effect function def get_s3_bytes_side_effect(s3_client, s3_path, start_index=None, end_index=None): if s3_path == 's3://bucket/inference/output1.jsonl': data = { "custom_id": f"{pdf_s3_path}-1", "outputs": [{"text": "{\"is_rotation_valid\": true, \"natural_text\": \"Short Text\"}"}], "round": 0 } elif s3_path == 's3://bucket/inference/output2.jsonl': data = { "custom_id": f"{pdf_s3_path}-1", "outputs": [{"text": "{\"is_rotation_valid\": false, \"natural_text\": \"Very Long Text Here that is longer\"}"}], "round": 0 } elif s3_path == 's3://bucket/inference/output3.jsonl': data = { "custom_id": f"{pdf_s3_path}-1", "outputs": [{"text": "{\"is_rotation_valid\": true, \"natural_text\": \"Medium Length Text\"}"}], "round": 0 } elif s3_path == 's3://bucket/inference/output4.jsonl': data = { "custom_id": f"{pdf_s3_path}-1", "outputs": [{"text": "{\"is_rotation_valid\": true, \"natural_text\": \"The Longest Correct Text\"}"}], "round": 0 } else: data = {} line = json.dumps(data) + '\n' content_bytes = line.encode('utf-8') return content_bytes mock_get_s3_bytes.side_effect = get_s3_bytes_side_effect # Call build_dolma_doc s3_workspace = 's3://bucket/workspace' dolma_doc = build_dolma_doc(s3_workspace, pdf) # Check that the resulting dolma_doc has the expected document_text expected_text = 'The Longest Correct Text\n' self.assertIsNotNone(dolma_doc) self.assertEqual(dolma_doc['text'], expected_text) # Additional assertions to ensure that the correct page was selected self.assertEqual(dolma_doc['metadata']['Source-File'], pdf_s3_path) self.assertEqual(dolma_doc['metadata']['pdf-total-pages'], 1) self.assertEqual(len(dolma_doc['attributes']['pdf_page_numbers']), 1) self.assertEqual(dolma_doc['attributes']['pdf_page_numbers'][0][2], 1) # Ensure that the document ID is correctly computed expected_id = hashlib.sha1(expected_text.encode()).hexdigest() self.assertEqual(dolma_doc['id'], expected_id) # Run the test if __name__ == '__main__': unittest.main()