import unittest from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig from PIL import Image import requests class MolmoProcessorTest(unittest.TestCase): def test_molmo_demo(self): # load the processor processor = AutoProcessor.from_pretrained( 'allenai/Molmo-7B-O-0924', trust_remote_code=True, torch_dtype='auto', ) # load the model model = AutoModelForCausalLM.from_pretrained( 'allenai/Molmo-7B-O-0924', trust_remote_code=True, torch_dtype='auto', ) device = "cuda:0" model = model.to(device) # process the image and text inputs = processor.process( images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)], text="Describe this image." ) # move inputs to the correct device and make a batch of size 1 inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} print("Raw inputs") print(inputs) print("\nShapes") # {('input_ids', torch.Size([1, 589])), ('images', torch.Size([1, 5, 576, 588])), ('image_masks', torch.Size([1, 5, 576])), ('image_input_idx', torch.Size([1, 5, 144]))} print({(x, y.shape) for x,y in inputs.items()}) print("\nTokens") print(processor.tokenizer.batch_decode(inputs["input_ids"])) # generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer ) # only get generated tokens; decode them to text generated_tokens = output[0,inputs['input_ids'].size(1):] generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) # print the generated text print(generated_text)