mirror of
https://github.com/allenai/olmocr.git
synced 2025-10-11 16:22:29 +00:00
400 lines
16 KiB
Python
Executable File
400 lines
16 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Input arguments:
|
|
# path to olmocr-bench/bench_data directory
|
|
# Path to metadata jsonl file
|
|
# Path to sqlite db
|
|
# Steps:
|
|
# Find all jsonl files in bench_data directory, read all "url" fields and make a set
|
|
# In metadata jsonl file, read all lines, get source_url field
|
|
# Do mapping between source_url and real_url by
|
|
# first turning ex. s3://ai2-s2-pdfs/b2d8/3a50695174f1de4973248fcf03c681ba1218.pdf into b2d83a50695174f1de4973248fcf03c681ba1218
|
|
# Then, in sqlite db with schema below, look up the real uri
|
|
# CREATE TABLE pdf_mapping (
|
|
# pdf_hash TEXT PRIMARY KEY,
|
|
# uri TEXT
|
|
# );
|
|
# Report if any of the final uri's match with original set
|
|
#
|
|
# Also support things if the source_url is in the following format, starting with ./
|
|
# ex ./synth_tables/56441bdefb2397d956da725903948e0893c9_pg1.pdf, then get the 56441bdefb2397d956da725903948e0893c9
|
|
# Then, using the schema below in the same db, look up the full hash first some this given hash, then get the full uri to continue the lookup
|
|
# CREATE TABLE substr_to_full_hash (
|
|
# pdf_hash TEXT PRIMARY KEY, -- this will be the shortened hash
|
|
# full_hash TEXT -- this is the original hash
|
|
# );
|
|
|
|
import argparse
|
|
import json
|
|
import re
|
|
import sqlite3
|
|
from pathlib import Path
|
|
|
|
|
|
def get_bench_urls(bench_data_dir):
|
|
"""Read all JSONL files in bench_data directory and extract URLs."""
|
|
bench_urls = set()
|
|
bench_data_path = Path(bench_data_dir)
|
|
|
|
for jsonl_file in bench_data_path.rglob("*.jsonl"):
|
|
with open(jsonl_file, "r") as f:
|
|
for line in f:
|
|
try:
|
|
data = json.loads(line)
|
|
if "url" in data:
|
|
bench_urls.add(data["url"])
|
|
except json.JSONDecodeError:
|
|
continue
|
|
|
|
return bench_urls
|
|
|
|
|
|
def s3_url_to_hash(s3_url):
|
|
"""Convert S3 URL to hash format.
|
|
e.g., s3://ai2-s2-pdfs/b2d8/3a50695174f1de4973248fcf03c681ba1218.pdf -> b2d83a50695174f1de4973248fcf03c681ba1218
|
|
"""
|
|
match = re.search(r"s3://[^/]+/([^/]+)/([^.]+)", s3_url)
|
|
if match:
|
|
prefix = match.group(1)
|
|
hash_part = match.group(2)
|
|
return prefix + hash_part
|
|
return None
|
|
|
|
|
|
def local_path_to_short_hash(local_path):
|
|
"""Extract short hash from local path format.
|
|
e.g., ./synth_tables/56441bdefb2397d956da725903948e0893c9_pg1.pdf -> 56441bdefb2397d956da725903948e0893c9
|
|
"""
|
|
match = re.search(r"([a-f0-9]+)(?:_pg\d+)?\.pdf", local_path)
|
|
if match:
|
|
return match.group(1)
|
|
return None
|
|
|
|
|
|
def find_and_handle_contaminated_files(metadata_jsonl_path, contaminated_pdf_ids, delete_mode=False):
|
|
"""Find and optionally delete files related to contaminated PDFs.
|
|
|
|
Returns:
|
|
List of files that were deleted or would be deleted
|
|
"""
|
|
# Get the base directory from metadata jsonl path
|
|
metadata_dir = Path(metadata_jsonl_path).parent
|
|
output_dir = metadata_dir.parent # Go up one level from metadata directory
|
|
|
|
# Get the name from the metadata jsonl filename (e.g., "synthetic" from "synthetic.jsonl")
|
|
name = Path(metadata_jsonl_path).stem
|
|
|
|
files_to_delete = []
|
|
|
|
for pdf_id in contaminated_pdf_ids:
|
|
# Pattern for files related to this pdf_id
|
|
# Based on mine_html_templates.py, the files are named with pattern:
|
|
# {pdf_id}_page{page_num}.{extension}
|
|
|
|
# Find HTML files
|
|
html_dir = output_dir / "html" / name
|
|
if html_dir.exists():
|
|
for html_file in html_dir.glob(f"{pdf_id}_page*.html"):
|
|
files_to_delete.append(html_file)
|
|
|
|
# Find PDF files (both original and rendered)
|
|
pdfs_dir = output_dir / "pdfs" / name
|
|
if pdfs_dir.exists():
|
|
for pdf_file in pdfs_dir.glob(f"{pdf_id}_page*.pdf"):
|
|
files_to_delete.append(pdf_file)
|
|
|
|
# Find markdown files in training directory
|
|
training_dir = output_dir / "training" / name
|
|
if training_dir.exists():
|
|
for md_file in training_dir.glob(f"{pdf_id}_page*.md"):
|
|
files_to_delete.append(md_file)
|
|
# Also check for PDF symlinks
|
|
for pdf_link in training_dir.glob(f"{pdf_id}_page*.pdf"):
|
|
files_to_delete.append(pdf_link)
|
|
|
|
# Find files in bench_data directory
|
|
bench_data_dir = output_dir / "bench_data"
|
|
|
|
# Check synthetic PDFs subdirectory
|
|
bench_synthetic_dir = bench_data_dir / "pdfs" / name
|
|
if bench_synthetic_dir.exists():
|
|
for pdf_file in bench_synthetic_dir.glob(f"{pdf_id}_page*.pdf"):
|
|
files_to_delete.append(pdf_file)
|
|
|
|
# Check claude_original subdirectory
|
|
claude_original_dir = bench_data_dir / "claude_original" / name
|
|
if claude_original_dir.exists():
|
|
for md_file in claude_original_dir.glob(f"{pdf_id}_page*.md"):
|
|
files_to_delete.append(md_file)
|
|
|
|
# Remove tests from bench_data JSONL file
|
|
jsonl_file = bench_data_dir / f"{name}.jsonl"
|
|
if jsonl_file.exists():
|
|
# Read all tests
|
|
remaining_tests = []
|
|
removed_tests = 0
|
|
|
|
with open(jsonl_file, "r") as f:
|
|
for line in f:
|
|
try:
|
|
test = json.loads(line)
|
|
# Check if this test belongs to a contaminated PDF
|
|
# Test PDFs are in format "{name}/{pdf_id}_page{page_num}.pdf"
|
|
test_pdf = test.get("pdf", "")
|
|
is_contaminated = False
|
|
for pdf_id in contaminated_pdf_ids:
|
|
if f"{pdf_id}_page" in test_pdf:
|
|
is_contaminated = True
|
|
removed_tests += 1
|
|
break
|
|
|
|
if not is_contaminated:
|
|
remaining_tests.append(test)
|
|
except json.JSONDecodeError:
|
|
continue
|
|
|
|
if removed_tests > 0:
|
|
if delete_mode:
|
|
# Rewrite the file without contaminated tests
|
|
with open(jsonl_file, "w") as f:
|
|
for test in remaining_tests:
|
|
f.write(json.dumps(test) + "\n")
|
|
print(f"Removed {removed_tests} tests from {jsonl_file}")
|
|
else:
|
|
print(f"Would remove {removed_tests} tests from {jsonl_file}")
|
|
|
|
# Print summary of files to delete
|
|
if files_to_delete:
|
|
print(f"\n{'Deleting' if delete_mode else 'Would delete'} {len(files_to_delete)} files:")
|
|
for file_path in sorted(files_to_delete): # Show first 10
|
|
relative_path = file_path.relative_to(output_dir) if output_dir in file_path.parents else file_path
|
|
print(f" - {relative_path}")
|
|
|
|
# Actually delete if in delete mode
|
|
if delete_mode:
|
|
try:
|
|
if file_path.is_symlink() or file_path.exists():
|
|
file_path.unlink()
|
|
except Exception as e:
|
|
print(f" Error deleting: {e}")
|
|
|
|
if delete_mode:
|
|
print(f"\nSuccessfully deleted {len(files_to_delete)} files")
|
|
else:
|
|
print(f"\nTo actually delete these files, run with --delete flag")
|
|
else:
|
|
print("\nNo files found to delete")
|
|
|
|
return files_to_delete
|
|
|
|
|
|
def check_contamination(bench_data_dir, metadata_jsonl_path, sqlite_db_path, delete_mode=False):
|
|
"""Main function to check for contamination between bench data and training data."""
|
|
print(f"Checking contamination...")
|
|
print(f"Bench data directory: {bench_data_dir}")
|
|
print(f"Metadata JSONL: {metadata_jsonl_path}")
|
|
print(f"SQLite database: {sqlite_db_path}\n")
|
|
|
|
# Step 1: Get all URLs from bench data
|
|
print("Step 1: Reading URLs from bench data...")
|
|
bench_urls = get_bench_urls(bench_data_dir)
|
|
print(f"Found {len(bench_urls)} unique URLs in bench data\n")
|
|
|
|
# Step 2: Read metadata JSONL and process source URLs
|
|
print("Step 2: Processing metadata JSONL...")
|
|
metadata_entries = []
|
|
with open(metadata_jsonl_path, "r") as f:
|
|
for line_num, line in enumerate(f, 1):
|
|
try:
|
|
data = json.loads(line)
|
|
if "source_url" in data:
|
|
metadata_entries.append(data)
|
|
except json.JSONDecodeError:
|
|
print(f"Warning: Could not parse line {line_num}")
|
|
|
|
print(f"Found {len(metadata_entries)} entries with source URLs in metadata\n")
|
|
|
|
# Step 3: Map URLs to hashes and query database
|
|
print("Step 3: Mapping URLs and querying database...")
|
|
conn = sqlite3.connect(sqlite_db_path)
|
|
cursor = conn.cursor()
|
|
|
|
real_urls = set()
|
|
unmapped_count = 0
|
|
s3_count = 0
|
|
local_count = 0
|
|
empty_result_count = 0
|
|
blank_url_entries = [] # Store entries with blank URLs
|
|
|
|
for metadata_entry in metadata_entries:
|
|
source_url = metadata_entry.get("source_url")
|
|
pdf_id = metadata_entry.get("pdf_id", "N/A")
|
|
pdf_hash = None
|
|
|
|
# Handle S3 URLs
|
|
if source_url.startswith("s3://"):
|
|
s3_count += 1
|
|
pdf_hash = s3_url_to_hash(source_url)
|
|
|
|
# Handle local paths starting with ./
|
|
elif source_url.startswith("./"):
|
|
local_count += 1
|
|
short_hash = local_path_to_short_hash(source_url)
|
|
if short_hash:
|
|
# First lookup: get full hash from short hash
|
|
cursor.execute("SELECT full_hash FROM substr_to_full_hash WHERE pdf_hash = ?", (short_hash,))
|
|
result = cursor.fetchone()
|
|
if result:
|
|
pdf_hash = result[0]
|
|
|
|
# If we have a hash, look up the real URI
|
|
if pdf_hash:
|
|
cursor.execute("SELECT uri FROM pdf_mapping WHERE pdf_hash = ?", (pdf_hash,))
|
|
result = cursor.fetchone()
|
|
if result:
|
|
# Check if the looked up URL is empty/blank
|
|
if result[0] == "" or result[0] is None:
|
|
empty_result_count += 1
|
|
blank_url_entries.append({"pdf_id": pdf_id, "source_url": source_url, "pdf_hash": pdf_hash, "db_result": result[0]})
|
|
else:
|
|
real_urls.add(result[0])
|
|
else:
|
|
unmapped_count += 1
|
|
|
|
conn.close()
|
|
|
|
print(list(real_urls)[:5])
|
|
|
|
print(f"Successfully mapped {len(real_urls)} URLs from database")
|
|
print(f" - S3 URLs processed: {s3_count}")
|
|
print(f" - Local paths processed: {local_count}")
|
|
print(f" - Empty/blank URLs from database: {empty_result_count}")
|
|
if unmapped_count > 0:
|
|
print(f"Warning: {unmapped_count} URLs could not be mapped\n")
|
|
|
|
# Print entries with blank URLs
|
|
if blank_url_entries:
|
|
print(f"\n⚠️ Entries with blank URLs ({len(blank_url_entries)} total):")
|
|
for entry in blank_url_entries[:20]: # Show first 20
|
|
print(f" PDF ID: {entry['pdf_id']}")
|
|
print(f" Source URL: {entry['source_url']}")
|
|
print(f" PDF Hash: {entry['pdf_hash']}")
|
|
print(f" DB Result: {repr(entry['db_result'])}")
|
|
if len(blank_url_entries) > 20:
|
|
print(f" ... and {len(blank_url_entries) - 20} more entries with blank URLs\n")
|
|
|
|
# Step 4: Check for contamination
|
|
print("Step 4: Checking for contamination...")
|
|
contaminated_urls = bench_urls.intersection(real_urls)
|
|
|
|
# Track which PDF IDs are contaminated (including those with blank URLs)
|
|
contaminated_pdf_ids = set()
|
|
|
|
# Add PDF IDs with blank URLs to contaminated set
|
|
for entry in blank_url_entries:
|
|
pdf_id = entry.get("pdf_id", "N/A")
|
|
if pdf_id != "N/A":
|
|
contaminated_pdf_ids.add(pdf_id)
|
|
|
|
if contaminated_urls:
|
|
# Find the pdf_ids that correspond to contaminated URLs
|
|
for metadata_entry in metadata_entries:
|
|
source_url = metadata_entry.get("source_url")
|
|
pdf_id = metadata_entry.get("pdf_id", "N/A")
|
|
pdf_hash = None
|
|
|
|
# Process URL to get hash
|
|
if source_url.startswith("s3://"):
|
|
pdf_hash = s3_url_to_hash(source_url)
|
|
elif source_url.startswith("./"):
|
|
short_hash = local_path_to_short_hash(source_url)
|
|
if short_hash:
|
|
conn_temp = sqlite3.connect(sqlite_db_path)
|
|
cursor_temp = conn_temp.cursor()
|
|
cursor_temp.execute("SELECT full_hash FROM substr_to_full_hash WHERE pdf_hash = ?", (short_hash,))
|
|
result = cursor_temp.fetchone()
|
|
if result:
|
|
pdf_hash = result[0]
|
|
conn_temp.close()
|
|
|
|
# If we have a hash, look up the real URI
|
|
if pdf_hash:
|
|
conn_temp = sqlite3.connect(sqlite_db_path)
|
|
cursor_temp = conn_temp.cursor()
|
|
cursor_temp.execute("SELECT uri FROM pdf_mapping WHERE pdf_hash = ?", (pdf_hash,))
|
|
result = cursor_temp.fetchone()
|
|
conn_temp.close()
|
|
|
|
if result and result[0] and result[0] in contaminated_urls:
|
|
contaminated_pdf_ids.add(pdf_id)
|
|
|
|
# Check if we have any contamination (URL matches or blank URLs)
|
|
total_contaminated = len(contaminated_urls) + len(blank_url_entries)
|
|
|
|
if total_contaminated > 0:
|
|
print(f"\n⚠️ CONTAMINATION DETECTED!")
|
|
if contaminated_urls:
|
|
print(f" - Found {len(contaminated_urls)} matching URLs")
|
|
if blank_url_entries:
|
|
print(f" - Found {len(blank_url_entries)} entries with blank URLs (treated as contaminated)")
|
|
print(f" - Total contaminated PDF IDs: {len(contaminated_pdf_ids)}")
|
|
|
|
if contaminated_urls:
|
|
print(f"\nMatching URLs (first 10):")
|
|
for url in sorted(contaminated_urls)[:10]:
|
|
print(f" - {url}")
|
|
if len(contaminated_urls) > 10:
|
|
print(f" ... and {len(contaminated_urls) - 10} more")
|
|
|
|
# Handle file deletion/dry run
|
|
if contaminated_pdf_ids:
|
|
print(f"\nProcessing files for {len(contaminated_pdf_ids)} contaminated PDFs...")
|
|
find_and_handle_contaminated_files(metadata_jsonl_path, contaminated_pdf_ids, delete_mode)
|
|
else:
|
|
print("\n✅ No contamination detected. Bench URLs and training URLs are disjoint, and no blank URLs found.")
|
|
|
|
# Print summary statistics
|
|
print(f"\nSummary:")
|
|
print(f" Bench URLs: {len(bench_urls)}")
|
|
print(f" Training URLs (mapped): {len(real_urls)}")
|
|
print(f" Contaminated URLs: {len(contaminated_urls)}")
|
|
print(f" Blank URL entries: {len(blank_url_entries)}")
|
|
print(f" Total contaminated: {total_contaminated}")
|
|
if bench_urls:
|
|
contamination_rate = (len(contaminated_urls) / len(bench_urls)) * 100
|
|
print(f" Contamination rate: {contamination_rate:.2f}%")
|
|
|
|
return total_contaminated
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Check for contamination between benchmark data and training data")
|
|
parser.add_argument("bench_data_dir", help="Path to olmocr-bench/bench_data directory")
|
|
parser.add_argument("metadata_jsonl", help="Path to metadata JSONL file")
|
|
parser.add_argument("sqlite_db", help="Path to SQLite database with pdf_mapping table")
|
|
parser.add_argument("--delete", action="store_true", help="Delete contaminated files (default is dry run)")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Validate paths
|
|
if not Path(args.bench_data_dir).is_dir():
|
|
print(f"Error: {args.bench_data_dir} is not a directory")
|
|
return 1
|
|
|
|
if not Path(args.metadata_jsonl).is_file():
|
|
print(f"Error: {args.metadata_jsonl} is not a file")
|
|
return 1
|
|
|
|
if not Path(args.sqlite_db).is_file():
|
|
print(f"Error: {args.sqlite_db} is not a file")
|
|
return 1
|
|
|
|
# Run contamination check
|
|
contaminated_count = check_contamination(args.bench_data_dir, args.metadata_jsonl, args.sqlite_db, delete_mode=args.delete)
|
|
|
|
# Return non-zero exit code if contamination found
|
|
return 1 if contaminated_count > 0 else 0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
exit(main())
|