mirror of
https://github.com/allenai/olmocr.git
synced 2025-10-11 16:22:29 +00:00
63 lines
2.0 KiB
Python
63 lines
2.0 KiB
Python
import base64
|
|
import urllib.request
|
|
from io import BytesIO
|
|
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
|
|
|
from olmocr.data.renderpdf import render_pdf_to_base64png
|
|
from olmocr.prompts import build_no_anchoring_v4_yaml_prompt
|
|
|
|
if __name__ == "__main__":
|
|
# Initialize the model
|
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained("allenai/olmOCR-7B-1025", torch_dtype=torch.bfloat16).eval()
|
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
|
|
# Grab a sample PDF
|
|
urllib.request.urlretrieve("https://olmocr.allenai.org/papers/olmocr.pdf", "./paper.pdf")
|
|
|
|
# Render page 1 to an image
|
|
image_base64 = render_pdf_to_base64png("./paper.pdf", 1, target_longest_image_dim=1288)
|
|
|
|
# Build the full prompt
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": build_no_anchoring_v4_yaml_prompt()},
|
|
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
|
|
],
|
|
}
|
|
]
|
|
|
|
# Apply the chat template and processor
|
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
|
|
|
inputs = processor(
|
|
text=[text],
|
|
images=[main_image],
|
|
padding=True,
|
|
return_tensors="pt",
|
|
)
|
|
inputs = {key: value.to(device) for (key, value) in inputs.items()}
|
|
|
|
# Generate the output
|
|
output = model.generate(
|
|
**inputs,
|
|
temperature=0.1,
|
|
max_new_tokens=50,
|
|
num_return_sequences=1,
|
|
do_sample=True,
|
|
)
|
|
|
|
# Decode the output
|
|
prompt_length = inputs["input_ids"].shape[1]
|
|
new_tokens = output[:, prompt_length:]
|
|
text_output = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
|
|
|
print(text_output)
|