mirror of
https://github.com/allenai/olmocr.git
synced 2025-10-10 15:52:31 +00:00
182 lines
5.8 KiB
Bash
Executable File
182 lines
5.8 KiB
Bash
Executable File
#!/bin/bash
|
|
|
|
# Compresses an OlmOCR model using quantization
|
|
# Usage: ./scripts/compress_model.sh <recipe_path> <input_model_path> <output_model_path> [--calibration-pdfs PATTERN]
|
|
|
|
set -e
|
|
|
|
# Default calibration PDFs pattern
|
|
DEFAULT_CALIBRATION_PDFS="/weka/oe-data-default/jakep/olmOCR-mix-0225-benchmark_set/*.pdf"
|
|
|
|
# Parse arguments
|
|
if [ $# -lt 3 ]; then
|
|
echo "Usage: $0 <recipe_path> <input_model_path> <output_model_path> [--calibration-pdfs PATTERN]"
|
|
echo "Example: $0 olmocr/train/quantization_configs/qwen2_5vl_w8a8_int8.yaml ./olmocrv2-base/ s3://ai2-oe-data/jakep/olmocr/compressed-model"
|
|
echo "Example with custom PDFs: $0 recipe.yaml ./model/ s3://output/ --calibration-pdfs '/path/to/pdfs/*.pdf'"
|
|
exit 1
|
|
fi
|
|
|
|
RECIPE="$1"
|
|
INPUT_MODEL="$2"
|
|
OUTPUT_MODEL="$3"
|
|
CALIBRATION_PDFS="$DEFAULT_CALIBRATION_PDFS"
|
|
|
|
# Check for optional calibration-pdfs argument
|
|
shift 3
|
|
while [[ $# -gt 0 ]]; do
|
|
case $1 in
|
|
--calibration-pdfs)
|
|
CALIBRATION_PDFS="$2"
|
|
shift 2
|
|
;;
|
|
*)
|
|
echo "Unknown option: $1"
|
|
exit 1
|
|
;;
|
|
esac
|
|
done
|
|
|
|
# Check for uncommitted changes
|
|
if ! git diff-index --quiet HEAD --; then
|
|
echo "Error: There are uncommitted changes in the repository."
|
|
echo "Please commit or stash your changes before running the compression."
|
|
echo ""
|
|
echo "Uncommitted changes:"
|
|
git status --short
|
|
exit 1
|
|
fi
|
|
|
|
# Use conda environment Python if available, otherwise use system Python
|
|
if [ -n "$CONDA_PREFIX" ]; then
|
|
PYTHON="$CONDA_PREFIX/bin/python"
|
|
echo "Using conda Python from: $CONDA_PREFIX"
|
|
else
|
|
PYTHON="python"
|
|
echo "Warning: No conda environment detected, using system Python"
|
|
fi
|
|
|
|
# Get version from version.py
|
|
VERSION=$($PYTHON -c 'import olmocr.version; print(olmocr.version.VERSION)')
|
|
echo "OlmOCR version: $VERSION"
|
|
|
|
# Get first 10 characters of git hash
|
|
GIT_HASH=$(git rev-parse HEAD | cut -c1-10)
|
|
echo "Git hash: $GIT_HASH"
|
|
|
|
# Get current git branch name
|
|
GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD)
|
|
echo "Git branch: $GIT_BRANCH"
|
|
|
|
# Create full image tag
|
|
IMAGE_TAG="olmocr-compress-${VERSION}-${GIT_HASH}"
|
|
echo "Building Docker image with tag: $IMAGE_TAG"
|
|
|
|
# Build the Docker image
|
|
echo "Building Docker image..."
|
|
docker build --platform linux/amd64 -f ./Dockerfile -t $IMAGE_TAG .
|
|
|
|
# Get Beaker username
|
|
BEAKER_USER=$(beaker account whoami --format json | jq -r '.[0].name')
|
|
echo "Beaker user: $BEAKER_USER"
|
|
|
|
# Push image to beaker
|
|
echo "Trying to push image to Beaker..."
|
|
if ! beaker image create --workspace ai2/oe-data-pdf --name $IMAGE_TAG $IMAGE_TAG 2>/dev/null; then
|
|
echo "Warning: Beaker image with tag $IMAGE_TAG already exists. Using existing image."
|
|
fi
|
|
|
|
# Create Python script to run beaker experiment
|
|
cat << 'EOF' > /tmp/run_compress_experiment.py
|
|
import sys
|
|
from beaker import Beaker, ExperimentSpec, TaskSpec, TaskContext, ResultSpec, TaskResources, ImageSource, Priority, Constraints, EnvVar, DataMount
|
|
|
|
# Get parameters from command line
|
|
image_tag = sys.argv[1]
|
|
beaker_user = sys.argv[2]
|
|
git_branch = sys.argv[3]
|
|
git_hash = sys.argv[4]
|
|
recipe = sys.argv[5]
|
|
input_model = sys.argv[6]
|
|
output_model = sys.argv[7]
|
|
calibration_pdfs = sys.argv[8]
|
|
|
|
# Initialize Beaker client
|
|
b = Beaker.from_env(default_workspace="ai2/olmocr")
|
|
|
|
# Check if AWS credentials secret exists
|
|
aws_creds_secret = f"{beaker_user}-AWS_CREDENTIALS_FILE"
|
|
try:
|
|
# Try to get the secret to see if it exists
|
|
b.secret.get(aws_creds_secret, workspace="ai2/olmocr")
|
|
has_aws_creds = True
|
|
print(f"Found AWS credentials secret: {aws_creds_secret}")
|
|
except:
|
|
has_aws_creds = False
|
|
print(f"AWS credentials secret not found: {aws_creds_secret}")
|
|
|
|
# Build commands for compression job
|
|
commands = []
|
|
if has_aws_creds:
|
|
commands.extend([
|
|
"mkdir -p ~/.aws",
|
|
'echo "$AWS_CREDENTIALS_FILE" > ~/.aws/credentials'
|
|
])
|
|
|
|
commands.extend([
|
|
# Install llmcompressor
|
|
"pip install llmcompressor==0.6.0",
|
|
# Run compression
|
|
f'python -m olmocr.train.compress_checkpoint --recipe {recipe} {input_model} {output_model} --calibration-pdfs "{calibration_pdfs}"'
|
|
])
|
|
|
|
# Build task spec with optional env vars
|
|
task_spec_args = {
|
|
"name": "olmocr-compress",
|
|
"image": ImageSource(beaker=f"{beaker_user}/{image_tag}"),
|
|
"command": [
|
|
"bash", "-c",
|
|
" && ".join(commands)
|
|
],
|
|
"context": TaskContext(
|
|
priority=Priority.normal,
|
|
preemptible=True,
|
|
),
|
|
"resources": TaskResources(gpu_count=1),
|
|
"constraints": Constraints(cluster=["ai2/ceres-cirrascale", "ai2/jupiter-cirrascale-2"]),
|
|
"result": ResultSpec(path="/noop-results"),
|
|
"datasets": [
|
|
DataMount.new(mount_path="/weka/oe-data-default", weka="oe-data-default"),
|
|
DataMount.new(mount_path="/weka/oe-training-default", weka="oe-training-default"),
|
|
]
|
|
}
|
|
|
|
# Add env vars if AWS credentials exist
|
|
if has_aws_creds:
|
|
task_spec_args["env_vars"] = [
|
|
EnvVar(name="AWS_CREDENTIALS_FILE", secret=aws_creds_secret)
|
|
]
|
|
|
|
# Create experiment spec
|
|
experiment_spec = ExperimentSpec(
|
|
description=f"OlmOCR Model Compression - Branch: {git_branch}, Commit: {git_hash}, Recipe: {recipe}",
|
|
budget="ai2/oe-base",
|
|
tasks=[TaskSpec(**task_spec_args)],
|
|
)
|
|
|
|
# Create the experiment
|
|
experiment = b.experiment.create(spec=experiment_spec, workspace="ai2/olmocr")
|
|
print(f"Created compression experiment: {experiment.id}")
|
|
print(f"View at: https://beaker.org/ex/{experiment.id}")
|
|
EOF
|
|
|
|
# Run the Python script to create the experiment
|
|
echo "Creating Beaker experiment..."
|
|
echo "Compressing model from: $INPUT_MODEL to: $OUTPUT_MODEL"
|
|
echo "Using recipe: $RECIPE"
|
|
echo "Using calibration PDFs: $CALIBRATION_PDFS"
|
|
$PYTHON /tmp/run_compress_experiment.py $IMAGE_TAG $BEAKER_USER $GIT_BRANCH $GIT_HASH "$RECIPE" "$INPUT_MODEL" "$OUTPUT_MODEL" "$CALIBRATION_PDFS"
|
|
|
|
# Clean up temporary file
|
|
rm /tmp/run_compress_experiment.py
|
|
|
|
echo "Compression experiment submitted successfully!" |