olmocr/olmocr/s3_utils.py

404 lines
17 KiB
Python

import base64
import concurrent.futures
import glob
import hashlib
import logging
import os
import posixpath
import time
from io import BytesIO, TextIOWrapper
from pathlib import Path
from typing import List, Optional
from urllib.parse import urlparse
import boto3
import requests # type: ignore
import zstandard as zstd
from boto3.s3.transfer import TransferConfig
from botocore.config import Config
from botocore.exceptions import ClientError
from google.cloud import storage
from tqdm import tqdm
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def parse_s3_path(s3_path: str) -> tuple[str, str]:
if not (s3_path.startswith("s3://") or s3_path.startswith("gs://") or s3_path.startswith("weka://")):
raise ValueError("s3_path must start with s3://, gs://, or weka://")
parsed = urlparse(s3_path)
bucket = parsed.netloc
key = parsed.path.lstrip("/")
return bucket, key
def expand_s3_glob(s3_client, s3_glob: str) -> dict[str, str]:
"""
Expand an S3 path that may or may not contain wildcards (e.g., *.pdf).
Returns a dict of {'s3://bucket/key': etag} for each matching object.
Raises a ValueError if nothing is found or if a bare prefix was provided by mistake.
"""
parsed = urlparse(s3_glob)
if not parsed.scheme.startswith("s3"):
raise ValueError("Path must start with s3://")
bucket = parsed.netloc
raw_path = parsed.path.lstrip("/")
prefix = posixpath.dirname(raw_path)
pattern = posixpath.basename(raw_path)
# Case 1: We have a wildcard
if any(wc in pattern for wc in ["*", "?", "[", "]"]):
if prefix and not prefix.endswith("/"):
prefix += "/"
paginator = s3_client.get_paginator("list_objects_v2")
matched = {}
for page in paginator.paginate(Bucket=bucket, Prefix=prefix):
for obj in page.get("Contents", []):
key = obj["Key"]
if glob.fnmatch.fnmatch(key, posixpath.join(prefix, pattern)): # type: ignore
matched[f"s3://{bucket}/{key}"] = obj["ETag"].strip('"')
return matched
# Case 2: No wildcard → single file or a bare prefix
try:
# Attempt to head a single file
resp = s3_client.head_object(Bucket=bucket, Key=raw_path)
if resp["ContentType"] == "application/x-directory":
raise ValueError(f"'{s3_glob}' appears to be a folder. " f"Use a wildcard (e.g., '{s3_glob.rstrip('/')}/*.pdf') to match files.")
return {f"s3://{bucket}/{raw_path}": resp["ETag"].strip('"')}
except ClientError as e:
if e.response["Error"]["Code"] == "404":
# Check if it's actually a folder with contents
check_prefix = raw_path if raw_path.endswith("/") else raw_path + "/"
paginator = s3_client.get_paginator("list_objects_v2")
for page in paginator.paginate(Bucket=bucket, Prefix=check_prefix):
if page.get("Contents"):
raise ValueError(f"'{s3_glob}' appears to be a folder. " f"Use a wildcard (e.g., '{s3_glob.rstrip('/')}/*.pdf') to match files.")
raise ValueError(f"No object or prefix found at '{s3_glob}'. Check your path or add a wildcard.")
else:
raise
def get_s3_bytes(s3_client, s3_path: str, start_index: Optional[int] = None, end_index: Optional[int] = None) -> bytes:
# Fall back for local files
if os.path.exists(s3_path):
assert start_index is None and end_index is None, "Range query not supported yet"
with open(s3_path, "rb") as f:
return f.read()
bucket, key = parse_s3_path(s3_path)
# Build the range header if start_index and/or end_index are specified
range_header = None
if start_index is not None and end_index is not None:
# Range: bytes=start_index-end_index
range_value = f"bytes={start_index}-{end_index}"
range_header = {"Range": range_value}
elif start_index is not None and end_index is None:
# Range: bytes=start_index-
range_value = f"bytes={start_index}-"
range_header = {"Range": range_value}
elif start_index is None and end_index is not None:
# Range: bytes=-end_index (last end_index bytes)
range_value = f"bytes=-{end_index}"
range_header = {"Range": range_value}
if range_header:
obj = s3_client.get_object(Bucket=bucket, Key=key, Range=range_header["Range"])
else:
obj = s3_client.get_object(Bucket=bucket, Key=key)
return obj["Body"].read()
def get_s3_bytes_with_backoff(s3_client, pdf_s3_path, max_retries: int = 8, backoff_factor: int = 2):
attempt = 0
while attempt < max_retries:
try:
return get_s3_bytes(s3_client, pdf_s3_path)
except ClientError as e:
# Check for some error kinds AccessDenied error and raise immediately
if e.response["Error"]["Code"] in ("AccessDenied", "NoSuchKey"):
logger.error(f"{e.response['Error']['Code']} error when trying to access {pdf_s3_path}: {e}")
raise
else:
wait_time = backoff_factor**attempt
logger.warning(f"Attempt {attempt+1} failed to get_s3_bytes for {pdf_s3_path}: {e}. Retrying in {wait_time} seconds...")
time.sleep(wait_time)
attempt += 1
except Exception as e:
wait_time = backoff_factor**attempt
logger.warning(f"Attempt {attempt+1} failed to get_s3_bytes for {pdf_s3_path}: {e}. Retrying in {wait_time} seconds...")
time.sleep(wait_time)
attempt += 1
logger.error(f"Failed to get_s3_bytes for {pdf_s3_path} after {max_retries} retries.")
raise Exception("Failed to get_s3_bytes after retries")
def put_s3_bytes(s3_client, s3_path: str, data: bytes):
bucket, key = parse_s3_path(s3_path)
s3_client.put_object(Bucket=bucket, Key=key, Body=data, ContentType="text/plain; charset=utf-8")
def parse_custom_id(custom_id: str) -> tuple[str, int]:
s3_path = custom_id[: custom_id.rindex("-")]
page_num = int(custom_id[custom_id.rindex("-") + 1 :])
return s3_path, page_num
def download_zstd_csv(s3_client, s3_path):
"""Download and decompress a .zstd CSV file from S3."""
try:
compressed_data = get_s3_bytes(s3_client, s3_path)
dctx = zstd.ZstdDecompressor()
decompressed = dctx.decompress(compressed_data)
text_stream = TextIOWrapper(BytesIO(decompressed), encoding="utf-8")
lines = text_stream.readlines()
logger.info(f"Downloaded and decompressed {s3_path}")
return lines
except s3_client.exceptions.NoSuchKey:
logger.info(f"No existing {s3_path} found in s3, starting fresh.")
return []
def upload_zstd_csv(s3_client, s3_path, lines):
"""Compress and upload a list of lines as a .zstd CSV file to S3."""
joined_text = "\n".join(lines)
compressor = zstd.ZstdCompressor()
compressed = compressor.compress(joined_text.encode("utf-8"))
put_s3_bytes(s3_client, s3_path, compressed)
logger.info(f"Uploaded compressed {s3_path}")
def is_running_on_gcp():
"""Check if the script is running on a Google Cloud Platform (GCP) instance."""
try:
# GCP metadata server URL to check instance information
response = requests.get(
"http://metadata.google.internal/computeMetadata/v1/instance/", headers={"Metadata-Flavor": "Google"}, timeout=1 # Set a short timeout
)
return response.status_code == 200
except requests.RequestException:
return False
def download_directory(model_choices: List[str], local_dir: str):
"""
Download the model to a specified local directory.
The function will attempt to download from the first available source in the provided list.
Supports Weka (weka://), Google Cloud Storage (gs://), and Amazon S3 (s3://) links.
Args:
model_choices (List[str]): List of model paths (weka://, gs://, or s3://).
local_dir (str): Local directory path where the model will be downloaded.
Raises:
ValueError: If no valid model path is found in the provided choices.
"""
local_path = Path(os.path.expanduser(local_dir))
local_path.mkdir(parents=True, exist_ok=True)
logger.info(f"Local directory set to: {local_path}")
# Reorder model_choices to prioritize weka:// links
weka_choices = [path for path in model_choices if path.startswith("weka://")]
# This is so hacky, but if you are on beaker/pluto, don't use weka
if os.environ.get("BEAKER_NODE_HOSTNAME", "").lower().startswith("pluto") or os.environ.get("BEAKER_NODE_HOSTNAME", "").lower().startswith("augusta"):
weka_choices = []
other_choices = [path for path in model_choices if not path.startswith("weka://")]
prioritized_choices = weka_choices + other_choices
for model_path in prioritized_choices:
logger.info(f"Attempting to download from: {model_path}")
try:
if model_path.startswith("weka://"):
download_dir_from_storage(model_path, str(local_path), storage_type="weka")
logger.info(f"Successfully downloaded model from Weka: {model_path}")
return
elif model_path.startswith("gs://"):
download_dir_from_storage(model_path, str(local_path), storage_type="gcs")
logger.info(f"Successfully downloaded model from Google Cloud Storage: {model_path}")
return
elif model_path.startswith("s3://"):
download_dir_from_storage(model_path, str(local_path), storage_type="s3")
logger.info(f"Successfully downloaded model from S3: {model_path}")
return
else:
logger.warning(f"Unsupported model path scheme: {model_path}")
except Exception as e:
logger.error(f"Failed to download from {model_path}: {e}")
continue
raise ValueError("Failed to download the model from all provided sources.")
def download_dir_from_storage(storage_path: str, local_dir: str, storage_type: str):
"""
Generalized function to download model files from different storage services
to a local directory, syncing using MD5 hashes where possible.
Args:
storage_path (str): The path to the storage location (weka://, gs://, or s3://).
local_dir (str): The local directory where files will be downloaded.
storage_type (str): Type of storage ('weka', 'gcs', or 's3').
Raises:
ValueError: If the storage type is unsupported or credentials are missing.
"""
bucket_name, prefix = parse_s3_path(storage_path)
total_files = 0
objects = []
if storage_type == "gcs":
client = storage.Client()
bucket = client.bucket(bucket_name)
blobs = list(bucket.list_blobs(prefix=prefix))
total_files = len(blobs)
logger.info(f"Found {total_files} files in GCS bucket '{bucket_name}' with prefix '{prefix}'.")
def should_download(blob, local_file_path):
return compare_hashes_gcs(blob, local_file_path)
def download_blob(blob, local_file_path):
try:
blob.download_to_filename(local_file_path)
logger.info(f"Successfully downloaded {blob.name} to {local_file_path}")
except Exception as e:
logger.error(f"Failed to download {blob.name} to {local_file_path}: {e}")
raise
items = blobs
elif storage_type in ("s3", "weka"):
if storage_type == "weka":
weka_access_key = os.getenv("WEKA_ACCESS_KEY_ID")
weka_secret_key = os.getenv("WEKA_SECRET_ACCESS_KEY")
if not weka_access_key or not weka_secret_key:
raise ValueError("WEKA_ACCESS_KEY_ID and WEKA_SECRET_ACCESS_KEY must be set for Weka access.")
endpoint_url = "https://weka-aus.beaker.org:9000"
boto3_config = Config(max_pool_connections=500, signature_version="s3v4", retries={"max_attempts": 10, "mode": "standard"})
s3_client = boto3.client(
"s3", endpoint_url=endpoint_url, aws_access_key_id=weka_access_key, aws_secret_access_key=weka_secret_key, config=boto3_config
)
else:
s3_client = boto3.client("s3", config=Config(max_pool_connections=500))
paginator = s3_client.get_paginator("list_objects_v2")
pages = paginator.paginate(Bucket=bucket_name, Prefix=prefix)
for page in pages:
if "Contents" in page:
objects.extend(page["Contents"])
else:
logger.warning(f"No contents found in page: {page}")
total_files = len(objects)
logger.info(f"Found {total_files} files in {'Weka' if storage_type == 'weka' else 'S3'} bucket '{bucket_name}' with prefix '{prefix}'.")
transfer_config = TransferConfig(
multipart_threshold=8 * 1024 * 1024, multipart_chunksize=8 * 1024 * 1024, max_concurrency=10, use_threads=True # Reduced for WekaFS compatibility
)
def should_download(obj, local_file_path):
return compare_hashes_s3(obj, local_file_path, storage_type)
def download_blob(obj, local_file_path):
logger.info(f"Starting download of {obj['Key']} to {local_file_path}")
try:
with open(local_file_path, "wb") as f:
s3_client.download_fileobj(bucket_name, obj["Key"], f, Config=transfer_config)
logger.info(f"Successfully downloaded {obj['Key']} to {local_file_path}")
except Exception as e:
logger.error(f"Failed to download {obj['Key']} to {local_file_path}: {e}")
raise
items = objects
else:
raise ValueError(f"Unsupported storage type: {storage_type}")
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
for item in items:
if storage_type == "gcs":
relative_path = os.path.relpath(item.name, prefix)
else:
relative_path = os.path.relpath(item["Key"], prefix)
local_file_path = os.path.join(local_dir, relative_path)
os.makedirs(os.path.dirname(local_file_path), exist_ok=True)
if should_download(item, local_file_path):
futures.append(executor.submit(download_blob, item, local_file_path))
else:
total_files -= 1 # Decrement total_files as we're skipping this file
if total_files > 0:
for future in tqdm(concurrent.futures.as_completed(futures), total=total_files, desc=f"Downloading from {storage_type.upper()}"):
try:
future.result()
except Exception as e:
logger.error(f"Error occurred during download: {e}")
else:
logger.info("All files are up-to-date. No downloads needed.")
logger.info(f"Downloaded model from {storage_type.upper()} to {local_dir}")
def compare_hashes_gcs(blob, local_file_path: str) -> bool:
"""Compare MD5 hashes for GCS blobs."""
if os.path.exists(local_file_path):
remote_md5_base64 = blob.md5_hash
hash_md5 = hashlib.md5()
with open(local_file_path, "rb") as f:
for chunk in iter(lambda: f.read(8192), b""):
hash_md5.update(chunk)
local_md5 = hash_md5.digest()
remote_md5 = base64.b64decode(remote_md5_base64)
if remote_md5 == local_md5:
logger.info(f"File '{local_file_path}' already up-to-date. Skipping download.")
return False
else:
logger.info(f"File '{local_file_path}' differs from GCS. Downloading.")
return True
else:
logger.info(f"File '{local_file_path}' does not exist locally. Downloading.")
return True
def compare_hashes_s3(obj, local_file_path: str, storage_type: str) -> bool:
"""Compare MD5 hashes or sizes for S3 objects (including Weka)."""
if os.path.exists(local_file_path):
if storage_type == "weka":
return True
else:
etag = obj["ETag"].strip('"')
if "-" in etag:
# Multipart upload, compare sizes
remote_size = obj["Size"]
local_size = os.path.getsize(local_file_path)
if remote_size == local_size:
logger.info(f"File '{local_file_path}' size matches remote multipart file. Skipping download.")
return False
else:
logger.info(f"File '{local_file_path}' size differs from remote multipart file. Downloading.")
return True
else:
hash_md5 = hashlib.md5()
with open(local_file_path, "rb") as f:
for chunk in iter(lambda: f.read(8192), b""):
hash_md5.update(chunk)
local_md5 = hash_md5.hexdigest()
if etag == local_md5:
logger.info(f"File '{local_file_path}' already up-to-date. Skipping download.")
return False
else:
logger.info(f"File '{local_file_path}' differs from remote. Downloading.")
return True
else:
logger.info(f"File '{local_file_path}' does not exist locally. Downloading.")
return True