olmocr/scripts/elo/calculate_elo_ratings.py
2025-02-13 17:06:36 -08:00

172 lines
6.7 KiB
Python

"""
Elo ratings for olmOCR vs baselines.
See data at scripts/elo/ratings.csv
MethodA,MethodB,A_wins,B_wins,A_rate(%),B_rate(%)
marker,mineru,53,26,67.1,32.9
mineru,pdelf,22,55,28.6,71.4
gotocr_format,marker,26,45,36.6,63.4
marker,pdelf,31,49,38.8,61.3
gotocr_format,pdelf,29,41,41.4,58.6
gotocr_format,mineru,38,37,50.7,49.3
Invoke via
python calculate_elo_ratings.py ratings.csv --num-bootstrap 5000 --num-elo-sims 100 --confidence-level 95 --seed 123
Output:
Bootstrapped Elo Ratings (95% CI):
--------------------------------------------------
pdelf 1813.0 ± 84.9 [1605.9, 1930.0]
mineru 1545.2 ± 99.7 [1336.7, 1714.1]
marker 1429.1 ± 100.7 [1267.6, 1645.5]
gotocr_format 1212.7 ± 82.0 [1097.3, 1408.3]
Pairwise Significance Tests:
--------------------------------------------------
gotocr_format vs marker Δ = -216.3 [-470.8, 135.0] p = 0.218
gotocr_format vs mineru Δ = -332.5 [-567.5, 19.3] p = 0.051
gotocr_format vs pdelf Δ = -600.3 [-826.1, -344.3] p = 0.000*
marker vs mineru Δ = -116.1 [-365.4, 246.5] p = 0.430
marker vs pdelf Δ = -383.9 [-610.6, -10.9] p = 0.044*
mineru vs pdelf Δ = -267.8 [-517.3, 104.0] p = 0.135
@kylel
"""
import random
from itertools import combinations
import click
import numpy as np
import pandas as pd
from tqdm import tqdm
def calculate_elo(matches_data, all_methods, k_factor=32, initial_rating=1500, n_replications=10, random_state=None):
"""Calculate Elo ratings with multiple replications per dataset"""
all_ratings = {method: [] for method in all_methods}
for _ in range(n_replications):
matches = matches_data.sample(frac=1, replace=False, random_state=random_state).reset_index(drop=True)
ratings = {method: initial_rating for method in all_methods}
for _, row in matches.iterrows():
method_a, method_b = row["MethodA"], row["MethodB"]
a_wins, b_wins = row["A_wins"], row["B_wins"]
for _ in range(int(a_wins)):
ra, rb = update_single_match(ratings[method_a], ratings[method_b], 1, k_factor)
ratings[method_a], ratings[method_b] = ra, rb
for _ in range(int(b_wins)):
ra, rb = update_single_match(ratings[method_a], ratings[method_b], 0, k_factor)
ratings[method_a], ratings[method_b] = ra, rb
for method in all_methods:
all_ratings[method].append(ratings[method])
return {method: np.mean(ratings) for method, ratings in all_ratings.items()}
def update_single_match(rating_a, rating_b, actual_score, k_factor):
"""Update ratings for a single match"""
expected_a = 1 / (1 + 10 ** ((rating_b - rating_a) / 400))
new_rating_a = rating_a + k_factor * (actual_score - expected_a)
new_rating_b = rating_b + k_factor * ((1 - actual_score) - (1 - expected_a))
return new_rating_a, new_rating_b
def bootstrap_elo_and_tests(df, num_bootstrap=1000, num_elo_sims=10, confidence_level=95, k_factor=32, initial_rating=1500, random_state=None):
"""Calculate bootstrapped Elo ratings with confidence intervals and perform pairwise significance tests"""
ci_lower = (100 - confidence_level) / 2
ci_upper = 100 - ci_lower
all_methods = set(df["MethodA"].unique()) | set(df["MethodB"].unique())
bootstrap_ratings = {method: [] for method in all_methods}
for _ in tqdm(range(num_bootstrap)):
bootstrap_sample = df.sample(n=len(df), replace=True, random_state=random_state)
ratings = calculate_elo(bootstrap_sample, all_methods, k_factor, initial_rating, num_elo_sims)
for method in all_methods:
bootstrap_ratings[method].append(ratings[method])
# Calculate statistics and perform significance tests
results = {}
# Basic statistics
for method in all_methods:
ratings_array = np.array(bootstrap_ratings[method])
results[method] = {
"mean": np.mean(ratings_array),
"std": np.std(ratings_array),
"ci_lower": np.percentile(ratings_array, ci_lower),
"ci_upper": np.percentile(ratings_array, ci_upper),
"bootstrap_samples": ratings_array, # Store for significance testing
}
# Pairwise significance tests
significance_tests = {}
for method1, method2 in combinations(all_methods, 2):
# Calculate difference distribution
diff_distribution = results[method1]["bootstrap_samples"] - results[method2]["bootstrap_samples"]
# Calculate p-value (two-tailed test)
p_value = 2 * min(np.mean(diff_distribution >= 0), np.mean(diff_distribution <= 0))
# Store results
significance_tests[(method1, method2)] = {
"diff_mean": np.mean(diff_distribution),
"diff_ci_lower": np.percentile(diff_distribution, ci_lower),
"diff_ci_upper": np.percentile(diff_distribution, ci_upper),
"p_value": p_value,
}
return results, significance_tests
@click.command()
@click.argument("ratings_file", type=click.Path(exists=True))
@click.option("--num-bootstrap", default=1000, help="Number of bootstrap iterations")
@click.option("--num-elo-sims", default=10, help="Number of ELO simulations per bootstrap")
@click.option("--confidence-level", default=95, help="Confidence level for intervals (in percent)")
@click.option("--seed", default=42, help="Random seed for reproducibility")
def main(ratings_file, num_bootstrap, num_elo_sims, confidence_level, seed):
# Set random seed
random.seed(seed)
np.random.seed(seed)
# Load data
df = pd.read_csv(ratings_file)
# Calculate bootstrapped Elo ratings
results, significance_tests = bootstrap_elo_and_tests(df, num_bootstrap=num_bootstrap, num_elo_sims=num_elo_sims)
# Sort and display results
print(f"\nBootstrapped Elo Ratings ({confidence_level}% CI):")
print("-" * 50)
sorted_results = dict(sorted(results.items(), key=lambda x: x[1]["mean"], reverse=True))
for method, stats in sorted_results.items():
print(f"{method:12} {stats['mean']:6.1f} ± {stats['std']:4.1f} [{stats['ci_lower']:6.1f}, {stats['ci_upper']:6.1f}]")
# Display pairwise significance tests
print("\nPairwise Significance Tests:")
print("-" * 50)
for (method1, method2), stats in significance_tests.items():
sig_marker = "*" if stats["p_value"] < (1 - confidence_level / 100) else " "
print(
f"{method1:12} vs {method2:12} Δ = {stats['diff_mean']:6.1f} "
+ f"[{stats['diff_ci_lower']:6.1f}, {stats['diff_ci_upper']:6.1f}] "
+ f"p = {stats['p_value']:.3f}{sig_marker}"
)
if __name__ == "__main__":
main()