olmocr/scripts/elo/draw_boxplots.py
2025-02-13 19:38:09 -08:00

197 lines
6.0 KiB
Python

"""
Boxplots of Elo ratings with 95% confidence intervals for each method.
Invocation:
python draw_boxplots.py results.txt boxplots.png
@kylel
"""
import hashlib
import re
from pathlib import Path
import click
import matplotlib.font_manager as font_manager
import matplotlib.pyplot as plt
import numpy as np
import requests
# AI2 Colors
AI2_PINK = "#f0529c"
AI2_DARK_TEAL = "#0a3235"
AI2_TEAL = "#105257"
# Name mappings
NAME_DISPLAY_MAP = {"pdelf": "olmOCR", "mineru": "MinerU", "marker": "Marker", "gotocr_format": "GOTOCR"}
def download_and_cache_file(url, cache_dir=None):
"""Download a file and cache it locally."""
if cache_dir is None:
cache_dir = Path.home() / ".cache" / "elo_plot"
cache_dir = Path(cache_dir)
cache_dir.mkdir(parents=True, exist_ok=True)
# Create filename from URL hash
url_hash = hashlib.sha256(url.encode()).hexdigest()[:12]
file_name = url.split("/")[-1]
cached_path = cache_dir / f"{url_hash}_{file_name}"
if not cached_path.exists():
response = requests.get(url, stream=True)
response.raise_for_status()
with open(cached_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return str(cached_path)
def parse_elo_data(file_path):
"""Parse Elo ratings data from a text file."""
with open(file_path, "r") as f:
content = f.read()
# Regular expression to match the data lines
pattern = r"(\w+)\s+(\d+\.\d+)\s*±\s*(\d+\.\d+)\s*\[(\d+\.\d+),\s*(\d+\.\d+)\]"
matches = re.finditer(pattern, content)
# Initialize lists to store data
names = []
medians = []
errors = []
ci_low = []
ci_high = []
for match in matches:
names.append(match.group(1))
medians.append(float(match.group(2)))
errors.append(float(match.group(3)))
ci_low.append(float(match.group(4)))
ci_high.append(float(match.group(5)))
return names, medians, errors, ci_low, ci_high
def create_boxplot(names, medians, errors, ci_low, ci_high, output_path, font_path):
"""Create and save a boxplot of Elo ratings."""
# Set up Manrope font
font_manager.fontManager.addfont(font_path)
plt.rcParams["font.family"] = "Manrope"
plt.rcParams["font.weight"] = "medium"
# Define colors - pdelf in pink, others in shades of teal/grey based on performance
max_median = max(medians)
colors = []
for i, median in enumerate(medians):
if names[i] == "pdelf":
colors.append(AI2_PINK)
else:
# Calculate a shade between dark teal and grey based on performance
performance_ratio = (median - min(medians)) / (max_median - min(medians))
base_color = np.array(tuple(int(AI2_DARK_TEAL[i : i + 2], 16) for i in (1, 3, 5))) / 255.0
grey = np.array([0.7, 0.7, 0.7]) # Light grey
color = tuple(np.clip(base_color * performance_ratio + grey * (1 - performance_ratio), 0, 1))
colors.append(color)
# Create box plot data
box_data = []
for i in range(len(names)):
q1 = medians[i] - errors[i]
q3 = medians[i] + errors[i]
box_data.append([ci_low[i], q1, medians[i], q3, ci_high[i]])
# Create box plot with smaller width and spacing
plt.figure(figsize=(4, 4))
bp = plt.boxplot(
box_data,
labels=[NAME_DISPLAY_MAP[name] for name in names],
whis=1.5,
patch_artist=True,
widths=0.15, # Make boxes much narrower
medianprops=dict(color="black"), # Make median line black
positions=np.arange(len(names)) * 0.25,
) # Reduce spacing between boxes significantly
# Color each box
for patch, color in zip(bp["boxes"], colors):
patch.set_facecolor(color)
patch.set_alpha(0.8)
# Style the plot
# plt.ylabel("Elo Rating", fontsize=12, color=AI2_DARK_TEAL)
plt.xticks(
np.arange(len(names)) * 0.25, # Match positions from boxplot
[NAME_DISPLAY_MAP[name] for name in names],
rotation=45,
ha="right",
color=AI2_DARK_TEAL,
)
plt.yticks(color=AI2_DARK_TEAL)
# Set x-axis limits to maintain proper spacing
plt.xlim(-0.1, (len(names) - 1) * 0.25 + 0.1)
# Remove the title and adjust the layout
plt.tight_layout()
# Remove spines
for spine in plt.gca().spines.values():
spine.set_visible(False)
# Add left spine only
plt.gca().spines["left"].set_visible(True)
plt.gca().spines["left"].set_color(AI2_DARK_TEAL)
plt.gca().spines["left"].set_linewidth(0.5)
# Add bottom spine only
plt.gca().spines["bottom"].set_visible(True)
plt.gca().spines["bottom"].set_color(AI2_DARK_TEAL)
plt.gca().spines["bottom"].set_linewidth(0.5)
plt.savefig(output_path, dpi=300, bbox_inches="tight", transparent=True)
plt.close()
@click.command()
@click.argument("input_file", type=click.Path(exists=True))
@click.argument("output_file", type=click.Path())
@click.option(
"--manrope-medium-font-path",
type=str,
default="https://dolma-artifacts.org/Manrope-Medium.ttf",
help="Path to the Manrope Medium font file (local path or URL)",
)
def main(input_file, output_file, manrope_medium_font_path):
"""Generate a boxplot from Elo ratings data.
INPUT_FILE: Path to the text file containing Elo ratings data
OUTPUT_FILE: Path where the plot should be saved
"""
try:
# Handle font path - download and cache if it's a URL
if manrope_medium_font_path.startswith(("http://", "https://")):
font_path = download_and_cache_file(manrope_medium_font_path)
else:
font_path = manrope_medium_font_path
# Parse the data
names, medians, errors, ci_low, ci_high = parse_elo_data(input_file)
# Create and save the plot
create_boxplot(names, medians, errors, ci_low, ci_high, output_file, font_path)
click.echo(f"Plot successfully saved to {output_file}")
except Exception as e:
click.echo(f"Error: {str(e)}", err=True)
raise click.Abort()
if __name__ == "__main__":
main()