olmocr/scripts/tagging_pipeline.py

779 lines
31 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
"""
Tagging pipeline for Dolma JSONL datasets.
For each .jsonl, .jsonl.gz, or .jsonl.ztd file under the dataset/documents folder,
this script issues a model prompt completion
collects the yes/no answers, and writes corresponding Dolma attributes JSONL files under
scratch/attributes/, mirroring the input structure.
"""
import argparse
import asyncio
import atexit
import gzip
import json
import logging
import os
import random
import re
import sys
import time
from typing import Optional
from urllib.parse import urlparse
import boto3
import httpx
import zstandard as zstd
from huggingface_hub import snapshot_download
from pydantic import BaseModel, Field, ValidationError
from olmocr.check import check_torch_gpu_available
from olmocr.metrics import MetricsKeeper
from olmocr.s3_utils import (
download_directory,
expand_s3_glob,
get_s3_bytes_with_backoff,
parse_s3_path,
)
from olmocr.version import VERSION
from olmocr.work_queue import LocalWorkQueue, S3WorkQueue, WorkQueue
# Initialize logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.propagate = False
server_logger = logging.getLogger("vllm")
server_logger.propagate = False
file_handler = logging.FileHandler("olmocr-pipeline-debug.log", mode="a")
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s"))
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s"))
# Add handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
server_logger.addHandler(file_handler)
# Default port; overridden by --port
SERVER_PORT = 30024
# Global variables for token statistics
metrics = MetricsKeeper(window=60 * 5)
class PIIClassification(BaseModel):
primary_language: str = Field(..., description="Primary language as a two-letter code")
document_type: str = Field(..., description="Basic summary of document type classification")
is_resume_cv: Optional[bool] = Field(..., description="True if the document is a page from a resume or cv")
contains_pii: Optional[bool] = Field(..., description="True if document contains PII")
async def _process_single_page(page_text: str) -> PIIClassification:
"""Helper function to process a single document or page."""
text = page_text
query = {
"model": "google/gemma-3-4b-it",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": (
f"{text}\n\n-----------\n"
"Given the text above, determine what type of document it is, and if it's a resume/CV. answer in JSON. The format of your json object should be {'primary_language': str, 'document_type': str, 'is_resume_cv': bool, 'contains_pii': bool}"
),
}
],
}
],
"max_tokens": 100,
"temperature": 0.0,
"response_format": {"type": "json_schema", "json_schema": {"name": "PIIClassification", "schema": PIIClassification.model_json_schema()}},
}
url = f"http://localhost:{SERVER_PORT}/v1/chat/completions"
# ---------- HTTP call ---------------------------------------------------
try:
status, body = await apost(url, json_data=query)
except Exception as e:
logger.warning(f"Server network error: {e!s}")
metrics.add_metrics(server_errors=1)
return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None)
metrics.add_metrics(server_requests=1)
if status != 200:
logger.warning(f"Server HTTP {status}: {body[:250]!r}")
metrics.add_metrics(server_errors=1)
return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None)
# ---------- Parse base JSON --------------------------------------------
try:
base = json.loads(body)
except json.JSONDecodeError:
logger.warning(f"Server response is not valid JSON: {body[:250]!r}")
metrics.add_metrics(server_errors=1)
return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None)
# Token accounting if available
if "usage" in base:
metrics.add_metrics(
server_input_tokens=base["usage"].get("prompt_tokens", 0),
server_output_tokens=base["usage"].get("completion_tokens", 0),
)
# ---------- Extract the model message ----------------------------------
try:
content = base["choices"][0]["message"].get("content")
except (KeyError, IndexError, AttributeError) as e:
logger.warning(f"Missing fields in Server response: {e!s}")
metrics.add_metrics(server_errors=1)
return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None)
if not isinstance(content, str):
logger.warning("Server `content` is not a string; treating as error.")
metrics.add_metrics(server_errors=1)
return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None)
try:
pii_classification: PIIClassification = PIIClassification.model_validate_json(content)
return pii_classification
except ValidationError as e:
logger.warning(f"Unable to parse pii classification object: {e!s}")
metrics.add_metrics(server_errors=1)
return PIIClassification(primary_language="en", document_type="unknown", is_resume_cv=None, contains_pii=None)
# Manual simple implementation of HTTP Post
# It feels strange perhaps, but httpx and aiohttp are very complex beasts
# Ex. the sessionpool in httpcore has 4 different locks in it, and I've noticed
# that at the scale of 100M+ requests, that they deadlock in different strange ways
async def apost(url, json_data):
parsed_url = urlparse(url)
host = parsed_url.hostname
port = parsed_url.port or 80
path = parsed_url.path or "/"
writer = None
try:
reader, writer = await asyncio.open_connection(host, port)
json_payload = json.dumps(json_data)
request = (
f"POST {path} HTTP/1.1\r\n"
f"Host: {host}\r\n"
f"Content-Type: application/json\r\n"
f"Content-Length: {len(json_payload)}\r\n"
f"Connection: close\r\n\r\n"
f"{json_payload}"
)
writer.write(request.encode())
await writer.drain()
# Read status line
status_line = await reader.readline()
if not status_line:
raise ConnectionError("No response from server")
status_parts = status_line.decode().strip().split(" ", 2)
if len(status_parts) < 2:
raise ValueError(f"Malformed status line: {status_line.decode().strip()}")
status_code = int(status_parts[1])
# Read headers
headers = {}
while True:
line = await reader.readline()
if line in (b"\r\n", b"\n", b""):
break
key, _, value = line.decode().partition(":")
headers[key.strip().lower()] = value.strip()
# Read response body
if "content-length" in headers:
body_length = int(headers["content-length"])
response_body = await reader.readexactly(body_length)
else:
raise ConnectionError("Anything other than fixed content length responses are not implemented yet")
return status_code, response_body
except Exception as e:
# Pass through errors
raise e
finally:
# But just make sure to close the socket on your way out
if writer is not None:
try:
writer.close()
await writer.wait_closed()
except:
pass
async def process_dolma_document(args, dolma_doc, sem):
"""
Query model to detect PII, enforcing a JSON schema.
Resilient to:
• Transport / HTTP errors
• Missing or malformed fields in the response
• Non-string or None `content`
• Bad JSON in the model's answer
Always returns: (doc_id, contains_pii: bool, text_length: int)
"""
doc_id = dolma_doc.get("id")
text = dolma_doc.get("text", "") or ""
language_key_name = f"{args.model.replace('/', '_')}_language"
resume_cv_key_name = f"{args.model.replace('/', '_')}_is_resume_cv"
result_attributes = {resume_cv_key_name: [], language_key_name: []}
# If pdf_page_numbers is present, split the text and process each page separately
if "attributes" in dolma_doc and "pdf_page_numbers" in dolma_doc["attributes"]:
page_numbers = dolma_doc["attributes"]["pdf_page_numbers"]
logger.info(f"Document {doc_id} has {len(page_numbers)} pages, processing each individually")
# Filter pages down to actual real content
selected_page_numbers = [tuple(p) for p in page_numbers if p[0] < p[1]]
first_page_number = selected_page_numbers[0]
# Sample 3 pages max per document, but always include the first page, it's a good signal for CV classification
random.shuffle(selected_page_numbers)
selected_page_numbers = selected_page_numbers[:3]
if first_page_number not in selected_page_numbers:
selected_page_numbers[0] = first_page_number
for start_pos, end_pos, page_num in page_numbers:
if (start_pos, end_pos, page_num) in selected_page_numbers:
page_text = text[start_pos:end_pos]
# Process each page with the semaphore to limit concurrent requests
async with sem:
pii_class = await _process_single_page(page_text)
result_attributes[resume_cv_key_name].append([start_pos, end_pos, pii_class.is_resume_cv])
result_attributes[language_key_name].append([start_pos, end_pos, pii_class.primary_language])
else:
result_attributes[resume_cv_key_name].append([start_pos, end_pos, None])
result_attributes[language_key_name].append([start_pos, end_pos, None])
return result_attributes
else:
raise NotImplementedError("Missing code here, expecting this to be dolma docs made by olmocr....")
async def process_file(args, worker_id: int, file_uri: str):
"""
Download a JSONL file, query model per record, and collect attributes.
"""
# Fetch raw bytes (S3 or local)
if file_uri.startswith("s3://"):
raw = await asyncio.to_thread(get_s3_bytes_with_backoff, dataset_s3, file_uri)
else:
with open(file_uri, "rb") as f:
raw = f.read()
# Decompress if needed
if file_uri.endswith(".gz"):
file_bytes = gzip.decompress(raw)
elif file_uri.endswith(".ztd") or file_uri.endswith(".zst") or file_uri.endswith(".zstd"):
dctx = zstd.ZstdDecompressor()
file_bytes = dctx.decompress(raw, max_output_size=1_000_000_000)
else:
file_bytes = raw
lines = file_bytes.decode("utf-8").splitlines()
page_tasks = {}
# Send all records in parallel, max N queued at a time
sem = asyncio.Semaphore(args.parallel_requests)
async with asyncio.TaskGroup() as tg:
for line in lines:
dolma_doc = json.loads(line)
task = tg.create_task(process_dolma_document(args, dolma_doc, sem))
page_tasks[dolma_doc["id"]] = (task, dolma_doc)
logger.info(f"Finished taskgroup with {len(page_tasks)} items for {file_uri}")
# Collect results and build attributes
attributes = []
for doc_id, (task, dolma_doc) in page_tasks.items():
doc_attributes = task.result()
attributes.append({"id": doc_id, "attributes": doc_attributes})
return attributes
async def worker(args, work_queue: WorkQueue, semaphore: asyncio.Semaphore, worker_id: int):
"""
Pop work-items off the queue, run PII tagging, write the attributes file
next to the dataset (keeping the original compression), mark the item done,
and drop an empty sentinel file in <workspace>/results/.
"""
while True:
await semaphore.acquire()
work_item = await work_queue.get_work()
if work_item is None:
logger.info(f"Worker {worker_id} exiting queue empty")
semaphore.release()
break
file_uri = work_item.work_paths[0]
logger.info(f"Worker {worker_id} processing {file_uri}")
try:
# ------------------------------------------------------------------
# Run the per-file pipeline
# ------------------------------------------------------------------
attributes = await process_file(args, worker_id, file_uri)
# 1. Build the relative path that mirrors documents/…
if file_uri.startswith("s3://"):
_, key = parse_s3_path(file_uri)
_, docs_prefix = parse_s3_path(args.dataset)
rel_path = key[len(os.path.join(docs_prefix, "documents/")) :]
else:
docs_root = os.path.join(args.dataset, "documents")
rel_path = os.path.relpath(file_uri, docs_root)
out_rel = os.path.join("attributes", args.attribute_name, rel_path)
out_jsonl = "\n".join(json.dumps(x) for x in attributes) + "\n"
# 2. Preserve compression type
if rel_path.endswith(".gz"):
payload = gzip.compress(out_jsonl.encode("utf-8"))
elif rel_path.endswith((".zst", ".ztd")):
payload = zstd.ZstdCompressor().compress(out_jsonl.encode("utf-8"))
else:
payload = out_jsonl.encode("utf-8")
# 3. Write to args.dataset (local or S3)
if args.dataset.startswith("s3://"):
bucket, prefix = parse_s3_path(args.dataset)
key = os.path.join(prefix, out_rel)
workspace_s3.put_object(Bucket=bucket, Key=key, Body=payload)
else:
out_path = os.path.join(args.dataset, out_rel)
os.makedirs(os.path.dirname(out_path), exist_ok=True)
with open(out_path, "wb") as fh:
fh.write(payload)
# 4. Mark queue item done
await work_queue.mark_done(work_item)
# 5. Drop empty sentinel file in <workspace>/results/
sentinel_rel = os.path.join("results", f"output_{work_item.hash}.jsonl")
if args.scratch.startswith("s3://"):
bkt, pfx = parse_s3_path(args.scratch)
key = os.path.join(pfx, sentinel_rel)
workspace_s3.put_object(Bucket=bkt, Key=key, Body=b"")
else:
sentinel_path = os.path.join(args.scratch, sentinel_rel)
os.makedirs(os.path.dirname(sentinel_path), exist_ok=True)
open(sentinel_path, "w").close()
except Exception as exc:
logger.exception(f"Worker {worker_id} exception: {exc!s}")
finally:
semaphore.release()
async def server_task(model_name_or_path, args, semaphore):
# Check GPU memory, lower mem devices need a bit less KV cache space because the VLM takes additional memory
# mem_fraction_arg = ["--mem-fraction-static", "0.80"]
cmd = [
"vllm",
"serve",
model_name_or_path,
"--port",
str(SERVER_PORT),
"--uvicorn-log-level",
"warning",
"--disable-log-requests",
]
proc = await asyncio.create_subprocess_exec(
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
# Ensure the subprocess is terminated on exit
def _kill_proc():
proc.terminate()
atexit.register(_kill_proc)
# Shared variables between tasks
last_running_req, last_queue_req = 0, 0
server_printed_ready_message = False
last_semaphore_release = time.time()
async def process_line(line):
nonlocal last_running_req, last_queue_req, last_semaphore_release, server_printed_ready_message
server_logger.info(line)
# if the server hasn't initialized yet, log all the lines to the main logger also, so that the user
# can see any warnings/errors more easily
if not server_printed_ready_message:
logger.info(line)
if not server_printed_ready_message and "The server is fired up and ready to roll!" in line:
server_printed_ready_message = True
last_semaphore_release = time.time()
match = re.search(r"Running: (\d+) reqs", line)
if match:
last_running_req = int(match.group(1))
match = re.search(r"Waiting: (\d+) reqs", line)
if match:
last_queue_req = int(match.group(1))
logger.info(f"running req: {last_running_req} queue req: {last_queue_req}")
async def read_stream(stream):
while True:
line = await stream.readline()
if not line:
break
try:
line = line.decode("utf-8").rstrip()
await process_line(line)
except Exception as ex:
logger.warning(f"Got {ex} when reading log line from inference server, skipping")
async def timeout_task():
nonlocal last_running_req, last_queue_req, last_semaphore_release
try:
while True:
await asyncio.sleep(1)
if server_printed_ready_message and last_queue_req == 0 and time.time() - last_semaphore_release > 30 and semaphore.locked():
semaphore.release()
last_semaphore_release = time.time()
logger.info("Semaphore released, allowing a worker to proceed.")
except asyncio.CancelledError:
pass # Clean up if the task is cancelled
# Start tasks to read stdout, stderr, and handle timeout logic
stdout_task = asyncio.create_task(read_stream(proc.stdout))
stderr_task = asyncio.create_task(read_stream(proc.stderr))
timeout_task = asyncio.create_task(timeout_task())
try:
await proc.wait()
except asyncio.CancelledError:
logger.info("Got cancellation request for server")
proc.terminate()
raise
timeout_task.cancel()
await asyncio.gather(stdout_task, stderr_task, timeout_task, return_exceptions=True)
async def server_host(model_name_or_path, args, semaphore):
MAX_RETRIES = 5
retry = 0
while retry < MAX_RETRIES:
await server_task(model_name_or_path, args, semaphore)
logger.warning("Server task ended")
retry += 1
if retry >= MAX_RETRIES:
logger.error(f"Ended up starting the server more than {retry} times, cancelling pipeline")
logger.error("")
logger.error("Please make sure vllm is installed according to the latest instructions for 0.8.4")
sys.exit(1)
async def check_server_ready():
max_attempts = 300
delay_sec = 1
url = f"http://localhost:{SERVER_PORT}/v1/models"
for attempt in range(1, max_attempts + 1):
try:
async with httpx.AsyncClient() as session:
response = await session.get(url)
if response.status_code == 200:
logger.info("server is ready.")
return
else:
logger.info(f"Attempt {attempt}: Unexpected status code {response.status_code}")
except Exception:
logger.warning(f"Attempt {attempt}: Please wait for model server to become ready...")
await asyncio.sleep(delay_sec)
raise Exception("model server did not become ready after waiting.")
async def download_model(model_name_or_path: str):
if model_name_or_path.startswith("s3://") or model_name_or_path.startswith("gs://") or model_name_or_path.startswith("weka://"):
logger.info(f"Downloading model directory from '{model_name_or_path}'")
model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "olmocr", "model")
download_directory([model_name_or_path], model_cache_dir)
return model_cache_dir
elif os.path.isabs(model_name_or_path) and os.path.isdir(model_name_or_path):
logger.info(f"Using local model path at '{model_name_or_path}'")
return model_name_or_path
else:
logger.info(f"Downloading model with hugging face '{model_name_or_path}'")
snapshot_download(repo_id=model_name_or_path)
return model_name_or_path
async def metrics_reporter(work_queue):
while True:
# Leading newlines preserve table formatting in logs
logger.info(f"Queue remaining: {work_queue.size}")
logger.info("\n" + str(metrics))
await asyncio.sleep(10)
def submit_beaker_job(args):
from beaker import ( # type: ignore
Beaker,
Constraints,
EnvVar,
ExperimentSpec,
ImageSource,
Priority,
ResultSpec,
SecretNotFound,
TaskContext,
TaskResources,
TaskSpec,
)
b = Beaker.from_env(default_workspace=args.beaker_workspace)
account = b.account.whoami()
owner = account.name
beaker_image = f"jakep/olmocr-tagging-{VERSION}"
task_name = f"olmocr-{os.path.basename(args.dataset.rstrip('/'))}"
# Take out --beaker flag so the workers will just run things
args_list = [arg for arg in sys.argv[1:] if arg != "--beaker"]
# Take out the --pdfs [arg] or --pdfs=[arg], since the queue is populated locally
args_list = [arg for i, arg in enumerate(args_list) if not (arg.startswith("--pdfs") or (i > 0 and args_list[i - 1] == "--pdfs"))]
try:
b.secret.get(f"{owner}-WEKA_ACCESS_KEY_ID", args.beaker_workspace)
b.secret.get(f"{owner}-WEKA_SECRET_ACCESS_KEY", args.beaker_workspace)
b.secret.get(f"{owner}-AWS_CREDENTIALS_FILE", args.beaker_workspace)
except SecretNotFound:
print(
f"Expected beaker secrets for accessing Weka and S3 are not found. Are you okay to write those to your beaker workspace {args.beaker_workspace}? [y/n]"
)
if input().strip().lower() != "y":
print("Exiting...")
sys.exit(1)
b.secret.write(f"{owner}-WEKA_ACCESS_KEY_ID", os.environ.get("WEKA_ACCESS_KEY_ID", ""), args.beaker_workspace)
b.secret.write(f"{owner}-WEKA_SECRET_ACCESS_KEY", os.environ.get("WEKA_SECRET_ACCESS_KEY", ""), args.beaker_workspace)
b.secret.write(
f"{owner}-AWS_CREDENTIALS_FILE",
open(os.path.join(os.path.expanduser("~"), ".aws", "credentials")).read(),
args.beaker_workspace,
)
env_var_secrets = [
EnvVar(name="WEKA_ACCESS_KEY_ID", secret=f"{owner}-WEKA_ACCESS_KEY_ID"),
EnvVar(name="WEKA_SECRET_ACCESS_KEY", secret=f"{owner}-WEKA_SECRET_ACCESS_KEY"),
EnvVar(name="AWS_CREDENTIALS_FILE", secret=f"{owner}-AWS_CREDENTIALS_FILE"),
]
try:
b.secret.get("OLMOCR_PREVIEW_HF_TOKEN", args.beaker_workspace)
env_var_secrets.append(EnvVar(name="HF_TOKEN", secret="OLMOCR_PREVIEW_HF_TOKEN"))
except SecretNotFound:
pass
try:
b.secret.get("OE_DATA_GCS_SA_KEY", args.beaker_workspace)
env_var_secrets.append(EnvVar(name="GOOGLE_APPLICATION_CREDENTIALS_FILE", secret="OE_DATA_GCS_SA_KEY"))
except SecretNotFound:
print("Input the olmo-gcs SA key if you would like to load weights from gcs (end with a double newline):")
lines = []
prev_empty = False
for line in iter(input, None):
if not line and prev_empty:
break
prev_empty = not line
lines.append(line)
gcs_sa_key = "\n".join(lines[:-1]).strip() # Remove the last empty line
if gcs_sa_key:
b.secret.write("OE_DATA_GCS_SA_KEY", gcs_sa_key, args.beaker_workspace)
env_var_secrets.append(EnvVar(name="GOOGLE_APPLICATION_CREDENTIALS_FILE", secret="OE_DATA_GCS_SA_KEY"))
# Create the experiment spec
experiment_spec = ExperimentSpec(
budget="ai2/oe-data",
description=task_name,
tasks=[
TaskSpec(
name=task_name,
propagate_failure=False,
propagate_preemption=False,
replicas=args.beaker_gpus,
context=TaskContext(
priority=Priority(args.beaker_priority),
preemptible=True,
),
image=ImageSource(beaker=beaker_image),
command=["python", "scripts/tagging_pipeline.py"] + args_list,
env_vars=[EnvVar(name="BEAKER_JOB_NAME", value=task_name), EnvVar(name="OWNER", value=owner)] + env_var_secrets,
resources=TaskResources(gpu_count=1),
constraints=Constraints(cluster=args.beaker_cluster if isinstance(args.beaker_cluster, list) else [args.beaker_cluster]),
result=ResultSpec(path="/noop-results"),
)
],
)
experiment_data = b.experiment.create(spec=experiment_spec, workspace=args.beaker_workspace)
print(f"Experiment URL: https://beaker.org/ex/{experiment_data.id}")
async def main():
parser = argparse.ArgumentParser(description="Tagging pipeline for Dolma JSONL dataset")
parser.add_argument("dataset", help="Dolma dataset root (local or s3://) with documents/ folder")
parser.add_argument("scratch", help="Scratch workspace (local dir or s3://)")
parser.add_argument("--workers", type=int, default=4, help="Number of concurrent workers")
parser.add_argument("--parallel_requests", type=int, default=800, help="Max number of parallel requests to send to model")
parser.add_argument("--model", default="google/gemma-3-4b-it", help="Model path or name, hugging face or local path format")
parser.add_argument("--attribute_name", default="model_pii_tagging", help="Path to use for attribute naming")
# Beaker/job running stuff
parser.add_argument("--beaker", action="store_true", help="Submit this job to beaker instead of running locally")
parser.add_argument("--beaker_workspace", help="Beaker workspace to submit to", default="ai2/olmocr")
parser.add_argument(
"--beaker_cluster",
help="Beaker clusters you want to run on",
default=["ai2/jupiter-cirrascale-2", "ai2/ceres-cirrascale", "ai2/neptune-cirrascale", "ai2/saturn-cirrascale", "ai2/augusta-google-1"],
)
parser.add_argument("--beaker_gpus", type=int, default=1, help="Number of gpu replicas to run")
parser.add_argument("--beaker_priority", type=str, default="normal", help="Beaker priority level for the job")
parser.add_argument("--port", type=int, default=30024, help="Port for Model server")
args = parser.parse_args()
global SERVER_PORT, workspace_s3, dataset_s3
SERVER_PORT = args.port
workspace_s3 = boto3.client("s3")
dataset_s3 = boto3.client("s3")
# setup the job to work in beaker environment, load secrets, adjust logging, etc.
if "BEAKER_JOB_ID" in os.environ:
server_logger.addHandler(console_handler)
if "AWS_CREDENTIALS_FILE" in os.environ:
cred_path = os.path.join(os.path.expanduser("~"), ".aws", "credentials")
os.makedirs(os.path.dirname(cred_path), exist_ok=True)
with open(cred_path, "w") as f:
f.write(os.environ.get("AWS_CREDENTIALS_FILE"))
if "GOOGLE_APPLICATION_CREDENTIALS" in os.environ:
cred_path = os.path.join(os.path.expanduser("~"), ".gcs", "credentials")
os.makedirs(os.path.dirname(cred_path), exist_ok=True)
with open(cred_path, "w") as f:
f.write(os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_FILE"))
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = cred_path
workspace_s3 = boto3.client("s3")
dataset_s3 = boto3.client("s3")
# Wait a little bit so that not all beaker jobs in a task start at the same time and download the model at the same time
replica_count = int(os.environ.get("BEAKER_REPLICA_COUNT", "1"))
interval = 10 if (replica_count - 1) * 10 <= 240 else 240 / max(1, replica_count - 1)
sleep_time = int(int(os.environ.get("BEAKER_REPLICA_RANK", "0")) * interval)
logger.info(f"Beaker job sleeping for {sleep_time} seconds to stagger model downloads")
await asyncio.sleep(sleep_time)
# Initialize work queue
if args.scratch.startswith("s3://"):
work_queue = S3WorkQueue(workspace_s3, args.scratch)
else:
work_queue = LocalWorkQueue(args.scratch)
# Discover input files
files = set()
if args.dataset.startswith("s3://"):
pattern = args.dataset.rstrip("/") + "/documents/*.jsonl*"
matched = expand_s3_glob(dataset_s3, pattern)
files = set(matched.keys())
else:
docs_dir = os.path.join(args.dataset, "documents")
for root, _, fns in os.walk(docs_dir):
for fn in fns:
if fn.endswith((".jsonl", ".jsonl.gz", ".jsonl.ztd")):
files.add(os.path.join(root, fn))
# Populate the work queue if needed
await work_queue.populate_queue(list(files), items_per_group=1)
if args.beaker:
submit_beaker_job(args)
return
# If you get this far, then you are doing inference and need a GPU
check_torch_gpu_available()
logger.info(f"Starting pipeline with PID {os.getpid()}")
# Download the model before you do anything else
model_name_or_path = await download_model(args.model)
# Initialize the work queue
qsize = await work_queue.initialize_queue()
if qsize == 0:
logger.info("No work to do, exiting")
return
# Create a semaphore to control worker access
# We only allow one worker to move forward with requests, until the server has no more requests in its queue
# This lets us get full utilization by having many workers, but also to be outputting dolma docs as soon as possible
# As soon as one worker is no longer saturating the gpu, the next one can start sending requests
semaphore = asyncio.Semaphore(1)
model_server = asyncio.create_task(server_host(model_name_or_path, args, semaphore))
await check_server_ready()
metrics_task = asyncio.create_task(metrics_reporter(work_queue))
# Create worker tasks to process the queue concurrently.
worker_tasks = []
for i in range(args.workers):
task = asyncio.create_task(worker(args, work_queue, semaphore, worker_id=i))
worker_tasks.append(task)
# Wait for all worker tasks to finish
await asyncio.gather(*worker_tasks)
model_server.cancel()
metrics_task.cancel()
logger.info("Work done")
if __name__ == "__main__":
asyncio.run(main())