olmocr/olmocr/train/inference.py
2025-02-25 08:57:02 -08:00

67 lines
2.2 KiB
Python

import base64
from io import BytesIO
import torch
import torch.distributed
from PIL import Image
from transformers import AutoConfig, AutoProcessor, Qwen2_5_VLForConditionalGeneration
from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts.anchor import get_anchor_text
from olmocr.prompts.prompts import build_openai_silver_data_prompt
@torch.no_grad()
def run_inference(model_name: str):
config = AutoConfig.from_pretrained(model_name)
processor = AutoProcessor.from_pretrained(model_name)
# If it doesn't load, change the type:mrope key to "default"
# model = Qwen2VLForConditionalGeneration.from_pretrained(model_name, device_map="auto", config=config)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_name, device_map="auto", config=config)
model.eval()
# local_pdf_path = os.path.join(os.path.dirname(__file__), "..", "..", "tests", "gnarly_pdfs", "horribleocr.pdf")
local_pdf_path = "/root/brochure.pdf"
page = 1
image_base64 = render_pdf_to_base64png(local_pdf_path, page, 1024)
anchor_text = get_anchor_text(local_pdf_path, page, pdf_engine="pdfreport")
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": build_openai_silver_data_prompt(anchor_text)},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))
inputs = processor(
text=[text],
images=[main_image],
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
output_ids = model.generate(**inputs, temperature=0.8, do_sample=True, max_new_tokens=1500)
generated_ids = [output_ids[len(input_ids) :] for input_ids, output_ids in zip(inputs["input_ids"], output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text[0])
def main():
run_inference(model_name="Qwen/Qwen2.5-VL-7B-Instruct")
if __name__ == "__main__":
main()