olmocr/scripts/train/grpotrainer-beaker.sh
Jake Poznanski 1dbb4332c0 FIxing up
2025-08-21 16:50:56 +00:00

275 lines
8.5 KiB
Bash
Executable File

#!/bin/bash
set -e
# Parse command line arguments
MODEL_NAME="Qwen/Qwen2.5-VL-7B-Instruct"
SKIP_DOCKER_BUILD=false
PREEMPTIBLE=false
MAX_TRAIN_SAMPLES=""
MAX_EVAL_SAMPLES=""
NUM_EPOCHS=1
LEARNING_RATE="1e-6"
BATCH_SIZE=1
GRAD_ACCUM_STEPS=4
USE_WANDB=false
WANDB_PROJECT="olmocr-grpo"
WANDB_RUN_NAME=""
while [[ $# -gt 0 ]]; do
case $1 in
--model)
MODEL_NAME="$2"
shift 2
;;
--skip-docker-build)
SKIP_DOCKER_BUILD=true
shift
;;
--preemptible)
PREEMPTIBLE=true
shift
;;
--max-train-samples)
MAX_TRAIN_SAMPLES="$2"
shift 2
;;
--max-eval-samples)
MAX_EVAL_SAMPLES="$2"
shift 2
;;
--num-epochs)
NUM_EPOCHS="$2"
shift 2
;;
--learning-rate)
LEARNING_RATE="$2"
shift 2
;;
--batch-size)
BATCH_SIZE="$2"
shift 2
;;
--grad-accum-steps)
GRAD_ACCUM_STEPS="$2"
shift 2
;;
--use-wandb)
USE_WANDB=true
shift
;;
--wandb-project)
WANDB_PROJECT="$2"
shift 2
;;
--wandb-run-name)
WANDB_RUN_NAME="$2"
shift 2
;;
*)
echo "Unknown option: $1"
echo "Usage: $0 [options]"
echo "Options:"
echo " --model MODEL_NAME Model to use (default: Qwen/Qwen2.5-VL-7B-Instruct)"
echo " --skip-docker-build Skip Docker build"
echo " --preemptible Use preemptible instances"
echo " --max-train-samples N Max training samples"
echo " --max-eval-samples N Max evaluation samples"
echo " --num-epochs N Number of training epochs (default: 1)"
echo " --learning-rate LR Learning rate (default: 1e-6)"
echo " --batch-size N Batch size per device (default: 1)"
echo " --grad-accum-steps N Gradient accumulation steps (default: 4)"
echo " --use-wandb Enable W&B logging"
echo " --wandb-project NAME W&B project name"
echo " --wandb-run-name NAME W&B run name"
exit 1
;;
esac
done
echo "Model: $MODEL_NAME"
echo "Preemptible: $PREEMPTIBLE"
echo "Use W&B: $USE_WANDB"
# Use conda environment Python if available, otherwise use system Python
if [ -n "$CONDA_PREFIX" ]; then
PYTHON="$CONDA_PREFIX/bin/python"
echo "Using conda Python from: $CONDA_PREFIX"
else
PYTHON="python"
echo "Warning: No conda environment detected, using system Python"
fi
# Get version from version.py
VERSION=$($PYTHON -c 'import olmocr.version; print(olmocr.version.VERSION)')
echo "OlmOCR version: $VERSION"
# Get first 10 characters of git hash
GIT_HASH=$(git rev-parse HEAD | cut -c1-10)
echo "Git hash: $GIT_HASH"
# Get current git branch name
GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD)
echo "Git branch: $GIT_BRANCH"
# Create full image tag
IMAGE_TAG="olmocr-grpo-${VERSION}-${GIT_HASH}"
echo "Building Docker image with tag: $IMAGE_TAG"
# Build and push Docker image if not skipping
if [ "$SKIP_DOCKER_BUILD" = false ]; then
echo "Building Docker image..."
docker build --platform linux/amd64 -f ./Dockerfile -t $IMAGE_TAG .
# Push image to beaker
echo "Trying to push image to Beaker..."
if ! beaker image create --workspace ai2/oe-data-pdf --name $IMAGE_TAG $IMAGE_TAG 2>/dev/null; then
echo "Warning: Beaker image with tag $IMAGE_TAG already exists. Using existing image."
fi
else
echo "Skipping Docker build as requested"
fi
# Get Beaker username
BEAKER_USER=$(beaker account whoami --format json | jq -r '.[0].name')
echo "Beaker user: $BEAKER_USER"
# Create Python script to run beaker experiment
cat << 'EOF' > /tmp/run_grpo_experiment.py
import sys
from beaker import Beaker, ExperimentSpec, TaskSpec, TaskContext, ResultSpec, TaskResources, ImageSource, Priority, Constraints, EnvVar, DataMount
# Get parameters from command line
image_tag = sys.argv[1]
beaker_user = sys.argv[2]
git_branch = sys.argv[3]
git_hash = sys.argv[4]
model_name = sys.argv[5]
preemptible = sys.argv[6] == "true"
max_train_samples = sys.argv[7]
max_eval_samples = sys.argv[8]
num_epochs = sys.argv[9]
learning_rate = sys.argv[10]
batch_size = sys.argv[11]
grad_accum_steps = sys.argv[12]
use_wandb = sys.argv[13] == "true"
wandb_project = sys.argv[14]
wandb_run_name = sys.argv[15]
# Initialize Beaker client
b = Beaker.from_env(default_workspace="ai2/olmocr")
# Build the training command
commands = [
# Install dependencies
"pip install .[train]",
"pip install trl wandb",
"pip install transformers==4.55.2", # Updated for GRPO compatibility
"pip install flash-attn==2.8.0.post2 --no-build-isolation",
"pip install s5cmd",
# Sync the bench data from S3
"echo 'Syncing bench data from S3...'",
"mkdir -p /data/olmOCR-bench",
"s5cmd sync 's3://ai2-oe-data/jakep/olmocr/olmOCR-bench-snapshot-082225/*' /data/olmOCR-bench/",
# Build GRPO training command
"echo 'Starting GRPO training...'",
]
# Build the python command with all parameters
grpo_cmd = [
"python -m olmocr.train.grpo_train",
"--train_bench_data_folder /data/olmOCR-bench/bench_data",
"--eval_bench_data_folder /data/olmOCR-bench/bench_data", # Using same data for now
f"--model_name {model_name}",
"--output_dir /weka/oe-training-default/olmocr-grpo-checkpoints",
f"--num_train_epochs {num_epochs}",
f"--learning_rate {learning_rate}",
f"--per_device_train_batch_size {batch_size}",
f"--per_device_eval_batch_size {batch_size}",
f"--gradient_accumulation_steps {grad_accum_steps}",
]
# Add optional parameters
if max_train_samples:
grpo_cmd.append(f"--max_train_samples {max_train_samples}")
if max_eval_samples:
grpo_cmd.append(f"--max_eval_samples {max_eval_samples}")
if use_wandb:
grpo_cmd.append("--use_wandb")
grpo_cmd.append(f"--wandb_project {wandb_project}")
if wandb_run_name:
grpo_cmd.append(f"--wandb_run_name {wandb_run_name}")
# Add the GRPO command to the commands list
commands.append(" ".join(grpo_cmd))
# Build task spec
task_spec = TaskSpec(
name="olmocr-grpo-training",
image=ImageSource(beaker=f"{beaker_user}/{image_tag}"),
command=[
"bash", "-c",
" && ".join(commands)
],
context=TaskContext(
priority=Priority.normal,
preemptible=preemptible,
),
resources=TaskResources(
gpu_count=1,
shared_memory="10GiB"
),
constraints=Constraints(cluster=["ai2/titan-cirrascale"]),
result=ResultSpec(path="/noop-results"),
env_vars=[
EnvVar(name="LOG_FILTER_TYPE", value="local_rank0_only"),
EnvVar(name="OMP_NUM_THREADS", value="8"),
EnvVar(name="BEAKER_USER_ID", value=beaker_user),
EnvVar(name="AWS_ACCESS_KEY_ID", secret="ALLENNLP_AWS_ACCESS_KEY_ID"),
EnvVar(name="AWS_SECRET_ACCESS_KEY", secret="ALLENNLP_AWS_SECRET_ACCESS_KEY"),
EnvVar(name="WANDB_API_KEY", secret="JAKE_WANDB_API_KEY"),
],
datasets=[
DataMount.new(mount_path="/weka/oe-data-default", weka="oe-data-default"),
DataMount.new(mount_path="/weka/oe-training-default", weka="oe-training-default"),
]
)
# Create experiment spec
experiment_spec = ExperimentSpec(
description=f"OlmOCR GRPO Training - Model: {model_name}, Branch: {git_branch}, Commit: {git_hash}",
budget="ai2/oe-base",
tasks=[task_spec],
)
# Create the experiment
experiment = b.experiment.create(spec=experiment_spec, workspace="ai2/olmocr")
print(f"Created GRPO training experiment: {experiment.id}")
print(f"View at: https://beaker.org/ex/{experiment.id}")
EOF
# Run the Python script to create the experiment
echo "Creating Beaker GRPO experiment..."
$PYTHON /tmp/run_grpo_experiment.py \
"$IMAGE_TAG" \
"$BEAKER_USER" \
"$GIT_BRANCH" \
"$GIT_HASH" \
"$MODEL_NAME" \
"$PREEMPTIBLE" \
"$MAX_TRAIN_SAMPLES" \
"$MAX_EVAL_SAMPLES" \
"$NUM_EPOCHS" \
"$LEARNING_RATE" \
"$BATCH_SIZE" \
"$GRAD_ACCUM_STEPS" \
"$USE_WANDB" \
"$WANDB_PROJECT" \
"$WANDB_RUN_NAME"
# Clean up temporary file
rm /tmp/run_grpo_experiment.py
echo "GRPO training experiment submitted successfully!"