mirror of
https://github.com/allenai/olmocr.git
synced 2025-10-11 08:12:22 +00:00
259 lines
9.6 KiB
Python
259 lines
9.6 KiB
Python
# Sends list of batch files to OpenAI for processing
|
|
# However, it also waits and gets the files when they are done, saves its state, and
|
|
# allows you to submit more than the 100GB of file request limits that the openaiAPI has
|
|
import argparse
|
|
import datetime
|
|
import json
|
|
import os
|
|
import time
|
|
|
|
from openai import OpenAI
|
|
from tqdm import tqdm
|
|
|
|
# Set up OpenAI client (API key should be set in the environment)
|
|
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
|
|
|
MAX_OPENAI_DISK_SPACE = 100 * 1024 * 1024 * 1024 # Max is 100GB on openAI
|
|
UPLOAD_STATE_FILENAME = "SENDSILVER_DATA"
|
|
|
|
|
|
# Function to upload a file to OpenAI and start batch processing
|
|
def upload_and_start_batch(file_path):
|
|
# Upload the file to OpenAI
|
|
with open(file_path, "rb") as file:
|
|
print(f"Uploading {file_path} to OpenAI Batch API...")
|
|
upload_response = client.files.create(file=file, purpose="batch")
|
|
file_id = upload_response.id
|
|
print(f"File uploaded successfully: {file_id}")
|
|
|
|
# Create a batch job
|
|
print(f"Creating batch job for {file_path}...")
|
|
batch_response = client.batches.create(
|
|
input_file_id=file_id, endpoint="/v1/chat/completions", completion_window="24h", metadata={"description": "pdf gold/silver data"}
|
|
)
|
|
|
|
batch_id = batch_response.id
|
|
print(f"Batch created successfully: {batch_id}")
|
|
return batch_id
|
|
|
|
|
|
def download_batch_result(batch_id, output_folder):
|
|
# Retrieve the batch result from OpenAI API
|
|
batch_data = client.batches.retrieve(batch_id)
|
|
|
|
if batch_data.status != "completed":
|
|
print(f"WARNING: {batch_id} is not completed, status: {batch_data.status}")
|
|
return batch_id, False
|
|
|
|
if batch_data.output_file_id is None:
|
|
print(f"WARNING: {batch_id} is completed, but no output file was generated")
|
|
return batch_id, False
|
|
|
|
print(f"Downloading batch data for {batch_id}")
|
|
|
|
file_response = client.files.content(batch_data.output_file_id)
|
|
|
|
# Define output file path
|
|
output_file = os.path.join(output_folder, f"{batch_id}.json")
|
|
|
|
# Save the result to a file
|
|
with open(output_file, "w") as f:
|
|
f.write(str(file_response.text))
|
|
|
|
return batch_id, True
|
|
|
|
|
|
ALL_STATES = ["init", "processing", "completed", "errored_out", "could_not_upload"]
|
|
FINISHED_STATES = ["completed", "errored_out"]
|
|
|
|
|
|
def _json_datetime_decoder(obj):
|
|
if "last_checked" in obj:
|
|
try:
|
|
obj["last_checked"] = datetime.datetime.fromisoformat(obj["last_checked"])
|
|
except (TypeError, ValueError):
|
|
pass # If it's not a valid ISO format, leave it as is
|
|
return obj
|
|
|
|
|
|
def _json_datetime_encoder(obj):
|
|
if isinstance(obj, datetime.datetime):
|
|
return obj.isoformat() # Convert datetime to ISO format string
|
|
raise TypeError(f"Object of type {obj.__class__.__name__} is not JSON serializable")
|
|
|
|
|
|
def get_state(folder_path: str) -> dict:
|
|
state_file = os.path.join(folder_path, UPLOAD_STATE_FILENAME)
|
|
|
|
try:
|
|
with open(state_file, "r") as f:
|
|
return json.load(f, object_hook=_json_datetime_decoder)
|
|
except (json.decoder.JSONDecodeError, FileNotFoundError):
|
|
# List all .jsonl files in the specified folder
|
|
jsonl_files = [f for f in os.listdir(folder_path) if f.endswith(".jsonl")]
|
|
|
|
if not jsonl_files:
|
|
raise Exception("No JSONL files found to process")
|
|
|
|
state = {
|
|
f: {
|
|
"filename": f,
|
|
"batch_id": None,
|
|
"state": "init",
|
|
"size": os.path.getsize(os.path.join(folder_path, f)),
|
|
"last_checked": datetime.datetime.now(),
|
|
}
|
|
for f in jsonl_files
|
|
}
|
|
|
|
with open(state_file, "w") as f:
|
|
json.dump(state, f, default=_json_datetime_encoder)
|
|
|
|
return state
|
|
|
|
|
|
def update_state(folder_path: str, filename: str, **kwargs):
|
|
all_state = get_state(folder_path)
|
|
for kwarg_name, kwarg_value in kwargs.items():
|
|
all_state[filename][kwarg_name] = kwarg_value
|
|
|
|
all_state[filename]["last_checked"] = datetime.datetime.now()
|
|
|
|
state_file = os.path.join(folder_path, UPLOAD_STATE_FILENAME)
|
|
temp_file = state_file + ".tmp"
|
|
|
|
# Write to temporary file first
|
|
with open(temp_file, "w") as f:
|
|
json.dump(all_state, f, default=_json_datetime_encoder)
|
|
f.flush()
|
|
os.fsync(f.fileno())
|
|
|
|
# Atomic rename of temporary file to target file
|
|
os.replace(temp_file, state_file)
|
|
|
|
return all_state
|
|
|
|
|
|
def get_total_space_usage():
|
|
return sum(file.bytes for file in client.files.list())
|
|
|
|
|
|
def get_estimated_space_usage(folder_path):
|
|
all_states = get_state(folder_path)
|
|
return sum(s["size"] for s in all_states.values() if s["state"] == "processing")
|
|
|
|
|
|
def get_next_work_item(folder_path):
|
|
all_states = list(get_state(folder_path).values())
|
|
all_states = [s for s in all_states if s["state"] not in FINISHED_STATES]
|
|
all_states.sort(key=lambda s: s["last_checked"])
|
|
|
|
return all_states[0] if len(all_states) > 0 else None
|
|
|
|
|
|
def get_done_total(folder_path):
|
|
processing, done, total = 0, 0, 0
|
|
|
|
for state in get_state(folder_path).values():
|
|
if state["state"] in FINISHED_STATES:
|
|
done += 1
|
|
if state["state"] == "processing":
|
|
processing += 1
|
|
total += 1
|
|
|
|
return processing, done, total
|
|
|
|
|
|
# Main function to process all .jsonl files in a folder
|
|
def process_folder(folder_path: str, max_gb: int):
|
|
output_folder = f"{folder_path.rstrip('/')}_done"
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
last_loop_time = datetime.datetime.now()
|
|
|
|
starting_free_space = MAX_OPENAI_DISK_SPACE - get_total_space_usage()
|
|
|
|
if starting_free_space < (max_gb * 1024**3) * 2:
|
|
raise ValueError(
|
|
f"Insufficient free space in OpenAI's file storage: Only {starting_free_space} GB left, but 2x{max_gb} GB are required (1x for your uploads, 1x for your results)."
|
|
)
|
|
|
|
while not all(state["state"] in FINISHED_STATES for state in get_state(folder_path).values()):
|
|
processing, done, total = get_done_total(folder_path)
|
|
print(f"Total items {total}, processing {processing}, done {done}, {done/total*100:.1f}%")
|
|
|
|
work_item = get_next_work_item(folder_path)
|
|
print(f"Processing {os.path.basename(work_item['filename'])}, cur status = {work_item['state']}")
|
|
|
|
# If all work items have been checked on, then you need to sleep a bit
|
|
if last_loop_time > datetime.datetime.now() - datetime.timedelta(seconds=1):
|
|
time.sleep(0.2)
|
|
|
|
if work_item["state"] == "init":
|
|
if get_estimated_space_usage(folder_path) < (max_gb * 1024**3):
|
|
try:
|
|
batch_id = upload_and_start_batch(os.path.join(folder_path, work_item["filename"]))
|
|
update_state(folder_path, work_item["filename"], state="processing", batch_id=batch_id)
|
|
except Exception as ex:
|
|
print(ex)
|
|
update_state(folder_path, work_item["filename"], state="init")
|
|
else:
|
|
print("waiting for something to finish processing before uploading more")
|
|
# Update the time you checked so you can move onto the next time
|
|
update_state(folder_path, work_item["filename"])
|
|
elif work_item["state"] == "processing":
|
|
batch_data = client.batches.retrieve(work_item["batch_id"])
|
|
|
|
if batch_data.status == "completed":
|
|
batch_id, success = download_batch_result(work_item["batch_id"], output_folder)
|
|
|
|
if success:
|
|
update_state(folder_path, work_item["filename"], state="completed")
|
|
else:
|
|
update_state(folder_path, work_item["filename"], state="errored_out")
|
|
|
|
try:
|
|
client.files.delete(batch_data.input_file_id)
|
|
except Exception as ex:
|
|
print(ex)
|
|
print("Could not delete old input data")
|
|
|
|
try:
|
|
client.files.delete(batch_data.output_file_id)
|
|
except Exception as ex:
|
|
print(ex)
|
|
print("Could not delete old output data")
|
|
elif batch_data.status in ["failed", "expired", "cancelled"]:
|
|
update_state(folder_path, work_item["filename"], state="errored_out")
|
|
|
|
try:
|
|
client.files.delete(batch_data.input_file_id)
|
|
except:
|
|
print("Could not delete old file data")
|
|
else:
|
|
# Update the time you checked so you can move onto the next time
|
|
update_state(folder_path, work_item["filename"])
|
|
|
|
last_loop_time = datetime.datetime.now()
|
|
|
|
print("All work has been completed")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Set up argument parsing for folder input
|
|
parser = argparse.ArgumentParser(description="Upload .jsonl files and process batches in OpenAI API.")
|
|
parser.add_argument("--max_gb", type=int, default=25, help="Max number of GB of batch processing files to upload at one time")
|
|
parser.add_argument("--clear_all_files", action="store_true", help="Helper to delete ALL files stored in your openai account")
|
|
parser.add_argument("folder", type=str, help="Path to the folder containing .jsonl files")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.clear_all_files:
|
|
all_files = list(client.files.list())
|
|
if input(f"Are you sure you want to delete {len(all_files)} files from your OpenAI account? [y/N]").lower() == "y":
|
|
for file in tqdm(all_files):
|
|
client.files.delete(file.id)
|
|
quit()
|
|
|
|
# Process the folder and start batches
|
|
process_folder(args.folder, args.max_gb)
|