mirror of
				https://github.com/allenai/olmocr.git
				synced 2025-10-31 10:04:26 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			172 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| 
 | |
| Elo ratings for olmOCR vs baselines.
 | |
| 
 | |
| See data at scripts/elo/ratings.csv
 | |
| 
 | |
|     MethodA,MethodB,A_wins,B_wins,A_rate(%),B_rate(%)
 | |
|     marker,mineru,53,26,67.1,32.9
 | |
|     mineru,pdelf,22,55,28.6,71.4
 | |
|     gotocr_format,marker,26,45,36.6,63.4
 | |
|     marker,pdelf,31,49,38.8,61.3
 | |
|     gotocr_format,pdelf,29,41,41.4,58.6
 | |
|     gotocr_format,mineru,38,37,50.7,49.3
 | |
| 
 | |
| Invoke via
 | |
|     python calculate_elo_ratings.py ratings.csv --num-bootstrap 5000 --num-elo-sims 100 --confidence-level 95 --seed 123
 | |
| 
 | |
| Output:
 | |
| 
 | |
|     Bootstrapped Elo Ratings (95% CI):
 | |
|     --------------------------------------------------
 | |
|     pdelf        1813.0 ± 84.9 [1605.9, 1930.0]
 | |
|     mineru       1545.2 ± 99.7 [1336.7, 1714.1]
 | |
|     marker       1429.1 ± 100.7 [1267.6, 1645.5]
 | |
|     gotocr_format 1212.7 ± 82.0 [1097.3, 1408.3]
 | |
| 
 | |
|     Pairwise Significance Tests:
 | |
|     --------------------------------------------------
 | |
|     gotocr_format vs marker       Δ = -216.3 [-470.8,  135.0] p = 0.218
 | |
|     gotocr_format vs mineru       Δ = -332.5 [-567.5,   19.3] p = 0.051
 | |
|     gotocr_format vs pdelf        Δ = -600.3 [-826.1, -344.3] p = 0.000*
 | |
|     marker       vs mineru       Δ = -116.1 [-365.4,  246.5] p = 0.430
 | |
|     marker       vs pdelf        Δ = -383.9 [-610.6,  -10.9] p = 0.044*
 | |
|     mineru       vs pdelf        Δ = -267.8 [-517.3,  104.0] p = 0.135
 | |
| 
 | |
| 
 | |
| @kylel
 | |
| 
 | |
| """
 | |
| 
 | |
| import random
 | |
| from itertools import combinations
 | |
| 
 | |
| import click
 | |
| import numpy as np
 | |
| import pandas as pd
 | |
| from tqdm import tqdm
 | |
| 
 | |
| 
 | |
| def calculate_elo(matches_data, all_methods, k_factor=32, initial_rating=1500, n_replications=10, random_state=None):
 | |
|     """Calculate Elo ratings with multiple replications per dataset"""
 | |
|     all_ratings = {method: [] for method in all_methods}
 | |
| 
 | |
|     for _ in range(n_replications):
 | |
|         matches = matches_data.sample(frac=1, replace=False, random_state=random_state).reset_index(drop=True)
 | |
|         ratings = {method: initial_rating for method in all_methods}
 | |
| 
 | |
|         for _, row in matches.iterrows():
 | |
|             method_a, method_b = row["MethodA"], row["MethodB"]
 | |
|             a_wins, b_wins = row["A_wins"], row["B_wins"]
 | |
| 
 | |
|             for _ in range(int(a_wins)):
 | |
|                 ra, rb = update_single_match(ratings[method_a], ratings[method_b], 1, k_factor)
 | |
|                 ratings[method_a], ratings[method_b] = ra, rb
 | |
| 
 | |
|             for _ in range(int(b_wins)):
 | |
|                 ra, rb = update_single_match(ratings[method_a], ratings[method_b], 0, k_factor)
 | |
|                 ratings[method_a], ratings[method_b] = ra, rb
 | |
| 
 | |
|         for method in all_methods:
 | |
|             all_ratings[method].append(ratings[method])
 | |
| 
 | |
|     return {method: np.mean(ratings) for method, ratings in all_ratings.items()}
 | |
| 
 | |
| 
 | |
| def update_single_match(rating_a, rating_b, actual_score, k_factor):
 | |
|     """Update ratings for a single match"""
 | |
|     expected_a = 1 / (1 + 10 ** ((rating_b - rating_a) / 400))
 | |
|     new_rating_a = rating_a + k_factor * (actual_score - expected_a)
 | |
|     new_rating_b = rating_b + k_factor * ((1 - actual_score) - (1 - expected_a))
 | |
|     return new_rating_a, new_rating_b
 | |
| 
 | |
| 
 | |
| def bootstrap_elo_and_tests(df, num_bootstrap=1000, num_elo_sims=10, confidence_level=95, k_factor=32, initial_rating=1500, random_state=None):
 | |
|     """Calculate bootstrapped Elo ratings with confidence intervals and perform pairwise significance tests"""
 | |
| 
 | |
|     ci_lower = (100 - confidence_level) / 2
 | |
|     ci_upper = 100 - ci_lower
 | |
| 
 | |
|     all_methods = set(df["MethodA"].unique()) | set(df["MethodB"].unique())
 | |
|     bootstrap_ratings = {method: [] for method in all_methods}
 | |
| 
 | |
|     for _ in tqdm(range(num_bootstrap)):
 | |
|         bootstrap_sample = df.sample(n=len(df), replace=True, random_state=random_state)
 | |
|         ratings = calculate_elo(bootstrap_sample, all_methods, k_factor, initial_rating, num_elo_sims)
 | |
| 
 | |
|         for method in all_methods:
 | |
|             bootstrap_ratings[method].append(ratings[method])
 | |
| 
 | |
|     # Calculate statistics and perform significance tests
 | |
|     results = {}
 | |
| 
 | |
|     # Basic statistics
 | |
|     for method in all_methods:
 | |
|         ratings_array = np.array(bootstrap_ratings[method])
 | |
|         results[method] = {
 | |
|             "mean": np.mean(ratings_array),
 | |
|             "std": np.std(ratings_array),
 | |
|             "ci_lower": np.percentile(ratings_array, ci_lower),
 | |
|             "ci_upper": np.percentile(ratings_array, ci_upper),
 | |
|             "bootstrap_samples": ratings_array,  # Store for significance testing
 | |
|         }
 | |
| 
 | |
|     # Pairwise significance tests
 | |
|     significance_tests = {}
 | |
|     for method1, method2 in combinations(all_methods, 2):
 | |
|         # Calculate difference distribution
 | |
|         diff_distribution = results[method1]["bootstrap_samples"] - results[method2]["bootstrap_samples"]
 | |
| 
 | |
|         # Calculate p-value (two-tailed test)
 | |
|         p_value = 2 * min(np.mean(diff_distribution >= 0), np.mean(diff_distribution <= 0))
 | |
| 
 | |
|         # Store results
 | |
|         significance_tests[(method1, method2)] = {
 | |
|             "diff_mean": np.mean(diff_distribution),
 | |
|             "diff_ci_lower": np.percentile(diff_distribution, ci_lower),
 | |
|             "diff_ci_upper": np.percentile(diff_distribution, ci_upper),
 | |
|             "p_value": p_value,
 | |
|         }
 | |
| 
 | |
|     return results, significance_tests
 | |
| 
 | |
| 
 | |
| @click.command()
 | |
| @click.argument("ratings_file", type=click.Path(exists=True))
 | |
| @click.option("--num-bootstrap", default=1000, help="Number of bootstrap iterations")
 | |
| @click.option("--num-elo-sims", default=10, help="Number of ELO simulations per bootstrap")
 | |
| @click.option("--confidence-level", default=95, help="Confidence level for intervals (in percent)")
 | |
| @click.option("--seed", default=42, help="Random seed for reproducibility")
 | |
| def main(ratings_file, num_bootstrap, num_elo_sims, confidence_level, seed):
 | |
|     # Set random seed
 | |
|     random.seed(seed)
 | |
|     np.random.seed(seed)
 | |
| 
 | |
|     # Load data
 | |
|     df = pd.read_csv(ratings_file)
 | |
| 
 | |
|     # Calculate bootstrapped Elo ratings
 | |
|     results, significance_tests = bootstrap_elo_and_tests(df, num_bootstrap=num_bootstrap, num_elo_sims=num_elo_sims)
 | |
| 
 | |
|     # Sort and display results
 | |
|     print(f"\nBootstrapped Elo Ratings ({confidence_level}% CI):")
 | |
|     print("-" * 50)
 | |
|     sorted_results = dict(sorted(results.items(), key=lambda x: x[1]["mean"], reverse=True))
 | |
|     for method, stats in sorted_results.items():
 | |
|         print(f"{method:12} {stats['mean']:6.1f} ± {stats['std']:4.1f} [{stats['ci_lower']:6.1f}, {stats['ci_upper']:6.1f}]")
 | |
| 
 | |
|     # Display pairwise significance tests
 | |
|     print("\nPairwise Significance Tests:")
 | |
|     print("-" * 50)
 | |
|     for (method1, method2), stats in significance_tests.items():
 | |
|         sig_marker = "*" if stats["p_value"] < (1 - confidence_level / 100) else " "
 | |
|         print(
 | |
|             f"{method1:12} vs {method2:12} Δ = {stats['diff_mean']:6.1f} "
 | |
|             + f"[{stats['diff_ci_lower']:6.1f}, {stats['diff_ci_upper']:6.1f}] "
 | |
|             + f"p = {stats['p_value']:.3f}{sig_marker}"
 | |
|         )
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 | 
