olmocr/scripts/train/grpotrainer-beaker.sh
2025-08-26 16:28:38 +00:00

236 lines
7.8 KiB
Bash
Executable File

#!/bin/bash
set -e
# Parse beaker-specific arguments
SKIP_DOCKER_BUILD=false
PREEMPTIBLE=false
# Store all arguments to pass to python command
PYTHON_ARGS=()
while [[ $# -gt 0 ]]; do
case $1 in
--skip-docker-build)
SKIP_DOCKER_BUILD=true
shift
;;
--preemptible)
PREEMPTIBLE=true
shift
;;
--help|-h)
echo "Usage: $0 [beaker-options] [grpo-training-options]"
echo ""
echo "Beaker-specific options:"
echo " --skip-docker-build Skip Docker build"
echo " --preemptible Use preemptible instances"
echo ""
echo "All other arguments are forwarded to python -m olmocr.train.grpo_train"
echo "Run 'python -m olmocr.train.grpo_train --help' to see available training options"
exit 0
;;
*)
# Store all other arguments to pass to python command
PYTHON_ARGS+=("$1")
shift
;;
esac
done
echo "Preemptible: $PREEMPTIBLE"
echo "Skip Docker Build: $SKIP_DOCKER_BUILD"
echo "Arguments to forward: ${PYTHON_ARGS[@]}"
# Use conda environment Python if available, otherwise use system Python
if [ -n "$CONDA_PREFIX" ]; then
PYTHON="$CONDA_PREFIX/bin/python"
echo "Using conda Python from: $CONDA_PREFIX"
else
PYTHON="python"
echo "Warning: No conda environment detected, using system Python"
fi
# Get version from version.py
VERSION=$($PYTHON -c 'import olmocr.version; print(olmocr.version.VERSION)')
echo "OlmOCR version: $VERSION"
# Get first 10 characters of git hash
GIT_HASH=$(git rev-parse HEAD | cut -c1-10)
echo "Git hash: $GIT_HASH"
# Get current git branch name
GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD)
echo "Git branch: $GIT_BRANCH"
# Create full image tag
IMAGE_TAG="olmocr-grpo-${VERSION}-${GIT_HASH}"
echo "Building Docker image with tag: $IMAGE_TAG"
# Build and push Docker image if not skipping
if [ "$SKIP_DOCKER_BUILD" = false ]; then
echo "Building Docker image..."
docker build --platform linux/amd64 -f ./Dockerfile -t $IMAGE_TAG .
# Push image to beaker
echo "Trying to push image to Beaker..."
if ! beaker image create --workspace ai2/oe-data-pdf --name $IMAGE_TAG $IMAGE_TAG 2>/dev/null; then
echo "Warning: Beaker image with tag $IMAGE_TAG already exists. Using existing image."
fi
else
echo "Skipping Docker build as requested"
fi
# Get Beaker username
BEAKER_USER=$(beaker account whoami --format json | jq -r '.[0].name')
echo "Beaker user: $BEAKER_USER"
# Create Python script to run beaker experiment
cat << 'EOF' > /tmp/run_grpo_experiment.py
import sys
import shlex
from beaker import Beaker, ExperimentSpec, TaskSpec, TaskContext, ResultSpec, TaskResources, ImageSource, Priority, Constraints, EnvVar, DataMount
# Get parameters from command line
image_tag = sys.argv[1]
beaker_user = sys.argv[2]
git_branch = sys.argv[3]
git_hash = sys.argv[4]
preemptible = sys.argv[5] == "true"
# All remaining arguments are the python command arguments
python_args = sys.argv[6:]
# Initialize Beaker client
b = Beaker.from_env(default_workspace="ai2/olmocr")
# Build the training command
commands = [
# Install dependencies
"pip install .[train]",
"pip install trl wandb",
"pip install transformers==4.55.2", # Updated for GRPO compatibility
"pip install flash-attn==2.8.0.post2 --no-build-isolation",
"pip install vllm==v0.10.1.1",
"pip install s5cmd",
# Sync the bench data from S3
"echo 'Syncing bench data from S3...'",
"mkdir -p /data/olmOCR-bench",
"s5cmd sync 's3://ai2-oe-data/jakep/olmocr/olmOCR-bench-snapshot-082225/*' /data/olmOCR-bench/",
"s5cmd sync 's3://ai2-oe-data/jakep/grpo_data_mixes/*' /data/jakep/grpo_data_mixes/",
# Build GRPO training command
"echo 'Starting GRPO training...'",
]
# Check if model_name is an S3 path and handle it
model_sync_commands = []
modified_args = list(python_args)
for i in range(len(modified_args)):
if modified_args[i] == "--model_name" and i + 1 < len(modified_args):
model_path = modified_args[i + 1].rstrip('/')
if model_path.startswith("s3://"):
# Extract checkpoint name from S3 path (last part of path)
checkpoint_name = model_path.split('/')[-1]
local_model_path = f"/data/models/{checkpoint_name}"
# Create sync commands
model_sync_commands = [
f"echo 'Syncing model from S3: {model_path}'",
"mkdir -p /data/models",
f"s5cmd sync '{model_path}/*' '{local_model_path}/'",
]
# Replace S3 path with local path in arguments
modified_args[i + 1] = local_model_path
break
# Add model sync commands if needed
commands.extend(model_sync_commands)
# Build the python command with forwarded arguments
# Add default paths if not provided in arguments
grpo_cmd = ["python -m olmocr.train.grpo_train"]
# Check if certain required arguments are in the provided args, add defaults if not
arg_str = " ".join(modified_args)
if "--train_bench_data_folder" not in arg_str:
grpo_cmd.append("--train_bench_data_folder /data/olmOCR-bench/bench_data")
if "--eval_bench_data_folder" not in arg_str:
grpo_cmd.append("--eval_bench_data_folder /data/olmOCR-bench/bench_data")
if "--output_dir" not in arg_str:
grpo_cmd.append("--output_dir /weka/oe-training-default/jakep/olmocr-grpo-checkpoints")
# Add all the (possibly modified) arguments
grpo_cmd.extend(modified_args)
# Add the GRPO command to the commands list
commands.append(" ".join(grpo_cmd))
# Extract model name from arguments if provided (for description)
model_name = "Unknown"
for i, arg in enumerate(modified_args):
if arg in ["--model_name", "--model"]:
if i + 1 < len(modified_args):
model_name = modified_args[i + 1]
break
# Build task spec
task_spec = TaskSpec(
name="olmocr-grpo-training",
image=ImageSource(beaker=f"{beaker_user}/{image_tag}"),
command=[
"bash", "-c",
" && ".join(commands)
],
context=TaskContext(
priority=Priority.normal,
preemptible=preemptible,
),
resources=TaskResources(
gpu_count=1,
shared_memory="10GiB"
),
constraints=Constraints(cluster=["ai2/titan-cirrascale"]),
result=ResultSpec(path="/noop-results"),
env_vars=[
EnvVar(name="LOG_FILTER_TYPE", value="local_rank0_only"),
EnvVar(name="OMP_NUM_THREADS", value="8"),
EnvVar(name="BEAKER_USER_ID", value=beaker_user),
EnvVar(name="AWS_ACCESS_KEY_ID", secret="ALLENNLP_AWS_ACCESS_KEY_ID"),
EnvVar(name="AWS_SECRET_ACCESS_KEY", secret="ALLENNLP_AWS_SECRET_ACCESS_KEY"),
EnvVar(name="WANDB_API_KEY", secret="JAKE_WANDB_API_KEY"),
],
datasets=[
DataMount.new(mount_path="/weka/oe-data-default", weka="oe-data-default"),
DataMount.new(mount_path="/weka/oe-training-default", weka="oe-training-default"),
]
)
# Create experiment spec
experiment_spec = ExperimentSpec(
description=f"OlmOCR GRPO Training - Model: {model_name}, Branch: {git_branch}, Commit: {git_hash}",
budget="ai2/oe-base",
tasks=[task_spec],
)
# Create the experiment
experiment = b.experiment.create(spec=experiment_spec, workspace="ai2/olmocr")
print(f"Created GRPO training experiment: {experiment.id}")
print(f"View at: https://beaker.org/ex/{experiment.id}")
EOF
# Run the Python script to create the experiment
echo "Creating Beaker GRPO experiment..."
$PYTHON /tmp/run_grpo_experiment.py \
"$IMAGE_TAG" \
"$BEAKER_USER" \
"$GIT_BRANCH" \
"$GIT_HASH" \
"$PREEMPTIBLE" \
"${PYTHON_ARGS[@]}"
# Clean up temporary file
rm /tmp/run_grpo_experiment.py
echo "GRPO training experiment submitted successfully!"