olmocr/scripts/check_contamination.py

222 lines
7.7 KiB
Python
Executable File

#!/usr/bin/env python3
# Input arguments:
# path to olmocr-bench/bench_data directory
# Path to metadata jsonl file
# Path to sqlite db
# Steps:
# Find all jsonl files in bench_data directory, read all "url" fields and make a set
# In metadata jsonl file, read all lines, get source_url field
# Do mapping between source_url and real_url by
# first turning ex. s3://ai2-s2-pdfs/b2d8/3a50695174f1de4973248fcf03c681ba1218.pdf into b2d83a50695174f1de4973248fcf03c681ba1218
# Then, in sqlite db with schema below, look up the real uri
# CREATE TABLE pdf_mapping (
# pdf_hash TEXT PRIMARY KEY,
# uri TEXT
# );
# Report if any of the final uri's match with original set
#
# Also support things if the source_url is in the following format, starting with ./
# ex ./synth_tables/56441bdefb2397d956da725903948e0893c9_pg1.pdf, then get the 56441bdefb2397d956da725903948e0893c9
# Then, using the schema below in the same db, look up the full hash first some this given hash, then get the full uri to continue the lookup
# CREATE TABLE substr_to_full_hash (
# pdf_hash TEXT PRIMARY KEY, -- this will be the shortened hash
# full_hash TEXT -- this is the original hash
# );
import json
import sqlite3
import argparse
from pathlib import Path
import re
def get_bench_urls(bench_data_dir):
"""Read all JSONL files in bench_data directory and extract URLs."""
bench_urls = set()
bench_data_path = Path(bench_data_dir)
for jsonl_file in bench_data_path.rglob("*.jsonl"):
with open(jsonl_file, 'r') as f:
for line in f:
try:
data = json.loads(line)
if 'url' in data:
bench_urls.add(data['url'])
except json.JSONDecodeError:
continue
return bench_urls
def s3_url_to_hash(s3_url):
"""Convert S3 URL to hash format.
e.g., s3://ai2-s2-pdfs/b2d8/3a50695174f1de4973248fcf03c681ba1218.pdf -> b2d83a50695174f1de4973248fcf03c681ba1218
"""
match = re.search(r's3://[^/]+/([^/]+)/([^.]+)', s3_url)
if match:
prefix = match.group(1)
hash_part = match.group(2)
return prefix + hash_part
return None
def local_path_to_short_hash(local_path):
"""Extract short hash from local path format.
e.g., ./synth_tables/56441bdefb2397d956da725903948e0893c9_pg1.pdf -> 56441bdefb2397d956da725903948e0893c9
"""
match = re.search(r'([a-f0-9]+)(?:_pg\d+)?\.pdf', local_path)
if match:
return match.group(1)
return None
def check_contamination(bench_data_dir, metadata_jsonl_path, sqlite_db_path):
"""Main function to check for contamination between bench data and training data."""
print(f"Checking contamination...")
print(f"Bench data directory: {bench_data_dir}")
print(f"Metadata JSONL: {metadata_jsonl_path}")
print(f"SQLite database: {sqlite_db_path}\n")
# Step 1: Get all URLs from bench data
print("Step 1: Reading URLs from bench data...")
bench_urls = get_bench_urls(bench_data_dir)
print(f"Found {len(bench_urls)} unique URLs in bench data\n")
# Step 2: Read metadata JSONL and process source URLs
print("Step 2: Processing metadata JSONL...")
source_urls = []
with open(metadata_jsonl_path, 'r') as f:
for line_num, line in enumerate(f, 1):
try:
data = json.loads(line)
if 'source_url' in data:
source_urls.append(data['source_url'])
except json.JSONDecodeError:
print(f"Warning: Could not parse line {line_num}")
print(f"Found {len(source_urls)} source URLs in metadata\n")
# Step 3: Map URLs to hashes and query database
print("Step 3: Mapping URLs and querying database...")
conn = sqlite3.connect(sqlite_db_path)
cursor = conn.cursor()
real_urls = set()
unmapped_count = 0
s3_count = 0
local_count = 0
empty_result_count = 0
for source_url in source_urls:
pdf_hash = None
# Handle S3 URLs
if source_url.startswith("s3://"):
s3_count += 1
pdf_hash = s3_url_to_hash(source_url)
# Handle local paths starting with ./
elif source_url.startswith("./"):
local_count += 1
short_hash = local_path_to_short_hash(source_url)
if short_hash:
# First lookup: get full hash from short hash
cursor.execute("SELECT full_hash FROM substr_to_full_hash WHERE pdf_hash = ?", (short_hash,))
result = cursor.fetchone()
if result:
pdf_hash = result[0]
# If we have a hash, look up the real URI
if pdf_hash:
cursor.execute("SELECT uri FROM pdf_mapping WHERE pdf_hash = ?", (pdf_hash,))
result = cursor.fetchone()
if result:
# Check if the looked up URL is empty/blank
if result[0] == "" or result[0] is None:
empty_result_count += 1
else:
real_urls.add(result[0])
else:
unmapped_count += 1
conn.close()
print(list(real_urls)[:5])
print(f"Successfully mapped {len(real_urls)} URLs from database")
print(f" - S3 URLs processed: {s3_count}")
print(f" - Local paths processed: {local_count}")
print(f" - Empty/blank URLs from database: {empty_result_count}")
if unmapped_count > 0:
print(f"Warning: {unmapped_count} URLs could not be mapped\n")
# Step 4: Check for contamination
print("Step 4: Checking for contamination...")
contaminated_urls = bench_urls.intersection(real_urls)
if contaminated_urls:
print(f"\n⚠️ CONTAMINATION DETECTED! Found {len(contaminated_urls)} matching URLs:")
for url in sorted(contaminated_urls)[:10]: # Show first 10
print(f" - {url}")
if len(contaminated_urls) > 10:
print(f" ... and {len(contaminated_urls) - 10} more")
else:
print("\n✅ No contamination detected. Bench URLs and training URLs are disjoint.")
# Print summary statistics
print(f"\nSummary:")
print(f" Bench URLs: {len(bench_urls)}")
print(f" Training URLs (mapped): {len(real_urls)}")
print(f" Contaminated URLs: {len(contaminated_urls)}")
if bench_urls:
contamination_rate = (len(contaminated_urls) / len(bench_urls)) * 100
print(f" Contamination rate: {contamination_rate:.2f}%")
return len(contaminated_urls)
def main():
parser = argparse.ArgumentParser(
description="Check for contamination between benchmark data and training data"
)
parser.add_argument(
"bench_data_dir",
help="Path to olmocr-bench/bench_data directory"
)
parser.add_argument(
"metadata_jsonl",
help="Path to metadata JSONL file"
)
parser.add_argument(
"sqlite_db",
help="Path to SQLite database with pdf_mapping table"
)
args = parser.parse_args()
# Validate paths
if not Path(args.bench_data_dir).is_dir():
print(f"Error: {args.bench_data_dir} is not a directory")
return 1
if not Path(args.metadata_jsonl).is_file():
print(f"Error: {args.metadata_jsonl} is not a file")
return 1
if not Path(args.sqlite_db).is_file():
print(f"Error: {args.sqlite_db} is not a file")
return 1
# Run contamination check
contaminated_count = check_contamination(
args.bench_data_dir,
args.metadata_jsonl,
args.sqlite_db
)
# Return non-zero exit code if contamination found
return 1 if contaminated_count > 0 else 0
if __name__ == "__main__":
exit(main())