mirror of
				https://github.com/allenai/olmocr.git
				synced 2025-11-04 03:56:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			172 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
import argparse
 | 
						|
import boto3
 | 
						|
import json
 | 
						|
import random
 | 
						|
import re
 | 
						|
import requests
 | 
						|
import time
 | 
						|
from tqdm import tqdm
 | 
						|
from transformers import AutoTokenizer
 | 
						|
 | 
						|
# Allowed characters: alphanumeric, space, and basic punctuation ".,!?()"
 | 
						|
ALLOWED_RE = re.compile(r'^[A-Za-z0-9\.,!?() ]+$')
 | 
						|
 | 
						|
def get_random_line_from_s3(bucket, key):
 | 
						|
    """
 | 
						|
    Reads an S3 object line-by-line and returns a random line using reservoir sampling.
 | 
						|
    """
 | 
						|
    s3 = boto3.client('s3')
 | 
						|
    response = s3.get_object(Bucket=bucket, Key=key)
 | 
						|
    random_line = None
 | 
						|
    count = 0
 | 
						|
    for line in response['Body'].iter_lines():
 | 
						|
        if not line:
 | 
						|
            continue
 | 
						|
        line_str = line.decode('utf-8')
 | 
						|
        count += 1
 | 
						|
        if random.randint(1, count) == 1:
 | 
						|
            random_line = line_str
 | 
						|
    return random_line
 | 
						|
 | 
						|
def query_infinigram(ngram, index="v4_rpj_llama_s4", retries=3):
 | 
						|
    """
 | 
						|
    Sends a count query to the infini-gram API for the given n-gram.
 | 
						|
    Retries a few times in case of network issues.
 | 
						|
    """
 | 
						|
    url = "https://api.infini-gram.io/"
 | 
						|
    payload = {
 | 
						|
        "index": index,
 | 
						|
        "query_type": "count",
 | 
						|
        "query": ngram,
 | 
						|
    }
 | 
						|
    for i in range(retries):
 | 
						|
        try:
 | 
						|
            response = requests.post(url, json=payload, timeout=10)
 | 
						|
            if response.status_code == 200:
 | 
						|
                result = response.json()
 | 
						|
                if "count" in result:
 | 
						|
                    return result["count"]
 | 
						|
        except Exception as e:
 | 
						|
            time.sleep(1)
 | 
						|
    return 0
 | 
						|
 | 
						|
def process_document(doc, tokenizer, ngram_size, num_samples, index="v4_rpj_llama_s4"):
 | 
						|
    """
 | 
						|
    Tokenizes the document using the Llama2 tokenizer and samples random n-grams.
 | 
						|
    Each n-gram is chosen such that:
 | 
						|
      1. It starts on a word-split boundary (using the offset mapping and a check on the preceding character).
 | 
						|
      2. Its decoded string contains only alphanumeric characters, spaces, and the punctuation marks ".,!?()".
 | 
						|
    
 | 
						|
    Each valid n-gram is then queried using the infini-gram API.
 | 
						|
    The function returns the document id, the number of matching n-grams (i.e. API count > 0),
 | 
						|
    the total number of valid n-grams sampled, and a list of tuples (flag, ngram_string).
 | 
						|
    """
 | 
						|
    text = doc.get("text", "")
 | 
						|
    doc_id = doc.get("id", "Unknown")
 | 
						|
    # Get tokenized representation with offset mapping to determine word boundaries.
 | 
						|
    tokenized = tokenizer(text, add_special_tokens=False, return_offsets_mapping=True)
 | 
						|
    token_ids = tokenized["input_ids"]
 | 
						|
    offsets = tokenized["offset_mapping"]
 | 
						|
 | 
						|
    if len(token_ids) < ngram_size:
 | 
						|
        return doc_id, 0, 0, []
 | 
						|
 | 
						|
    # Determine valid starting indices based on word-split boundaries.
 | 
						|
    valid_positions = []
 | 
						|
    # for i in range(len(token_ids) - ngram_size + 1):
 | 
						|
    #     start_offset = offsets[i][0]
 | 
						|
    #     if start_offset == 0 or (start_offset > 0 and text[start_offset - 1] == " "):
 | 
						|
    #         valid_positions.append(i)
 | 
						|
    
 | 
						|
    if not valid_positions:
 | 
						|
        # Fallback: if no valid positions are found, use all possible positions.
 | 
						|
        valid_positions = list(range(len(token_ids) - ngram_size + 1))
 | 
						|
    
 | 
						|
    valid_ngram_details = []
 | 
						|
    attempts = 0
 | 
						|
    max_attempts = num_samples * 10  # Limit to prevent infinite loops.
 | 
						|
    while len(valid_ngram_details) < num_samples and attempts < max_attempts:
 | 
						|
        idx = random.choice(valid_positions)
 | 
						|
        ngram_token_ids = token_ids[idx: idx+ngram_size]
 | 
						|
        ngram_str = tokenizer.decode(ngram_token_ids, clean_up_tokenization_spaces=True)
 | 
						|
        # Only accept n-grams that contain only allowed characters.
 | 
						|
        if ALLOWED_RE.fullmatch(ngram_str) and len(ngram_str.strip()) > ngram_size * 3:
 | 
						|
            count = query_infinigram(ngram_str, index=index)
 | 
						|
            flag = "YES" if count > 0 else "NO"
 | 
						|
            valid_ngram_details.append((flag, ngram_str))
 | 
						|
        attempts += 1
 | 
						|
 | 
						|
    match_count = sum(1 for flag, _ in valid_ngram_details if flag == "YES")
 | 
						|
    sample_count = len(valid_ngram_details)
 | 
						|
    return doc_id, match_count, sample_count, valid_ngram_details
 | 
						|
 | 
						|
def main():
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        description="Infini-gram n-gram matching script with Llama2 tokenization."
 | 
						|
    )
 | 
						|
    parser.add_argument("N", type=int, help="Number of random .jsonl files to process")
 | 
						|
    parser.add_argument("s3_path", type=str, help="S3 path to a prefix containing .jsonl files (e.g., s3://my-bucket/my-prefix/)")
 | 
						|
    parser.add_argument("--index", type=str, default="v4_dolma-v1_7_llama", help="Infini-gram index to use (default: v4_rpj_llama_s4)")
 | 
						|
    parser.add_argument("--ngram_size", type=int, default=10, help="Size of the n-gram to sample (default: 10)")
 | 
						|
    parser.add_argument("--num_ngrams", type=int, default=100, help="Number of random n-grams to sample from each document (default: 100)")
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    if not args.s3_path.startswith("s3://"):
 | 
						|
        print("Error: s3_path must start with 's3://'")
 | 
						|
        return
 | 
						|
    path_without_scheme = args.s3_path[5:]
 | 
						|
    parts = path_without_scheme.split("/", 1)
 | 
						|
    bucket = parts[0]
 | 
						|
    prefix = parts[1] if len(parts) > 1 else ""
 | 
						|
 | 
						|
    print("Listing .jsonl files from S3...")
 | 
						|
    s3 = boto3.client("s3")
 | 
						|
    response = s3.list_objects_v2(Bucket=bucket, Prefix=prefix)
 | 
						|
    files = [obj["Key"] for obj in response.get("Contents", []) if obj["Key"].endswith(".jsonl")]
 | 
						|
    if not files:
 | 
						|
        print("No .jsonl files found in the given prefix.")
 | 
						|
        return
 | 
						|
 | 
						|
    if args.N > len(files):
 | 
						|
        print(f"Requested {args.N} files, but only found {len(files)}. Processing all available files.")
 | 
						|
        args.N = len(files)
 | 
						|
    random_files = random.sample(files, args.N)
 | 
						|
 | 
						|
    print("Loading Llama2 tokenizer...")
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
 | 
						|
 | 
						|
    total_matches = 0
 | 
						|
    total_ngrams_sampled = 0
 | 
						|
 | 
						|
    for key in tqdm(random_files, desc="Processing files"):
 | 
						|
        line = get_random_line_from_s3(bucket, key)
 | 
						|
        if not line:
 | 
						|
            print(f"Skipping {key}: No valid lines found.")
 | 
						|
            continue
 | 
						|
        try:
 | 
						|
            doc = json.loads(line)
 | 
						|
        except Exception as e:
 | 
						|
            print(f"Error parsing JSON in {key}: {e}")
 | 
						|
            continue
 | 
						|
        doc_id, match_count, sample_count, details = process_document(
 | 
						|
            doc, tokenizer, args.ngram_size, args.num_ngrams, index=args.index
 | 
						|
        )
 | 
						|
        
 | 
						|
        # Print per-document n-gram summary
 | 
						|
        print(f"\nDocument ID: {doc_id}")
 | 
						|
        for flag, ngram in details:
 | 
						|
            # Print the flag in a fixed-width field (4 characters) followed by the n-gram representation.
 | 
						|
            print(f"{flag:4} {repr(ngram)}")
 | 
						|
        percentage = (match_count / sample_count * 100) if sample_count else 0
 | 
						|
        print(f"Matched n-grams: {match_count}/{sample_count} ({percentage:.2f}%)")
 | 
						|
        
 | 
						|
        total_matches += match_count
 | 
						|
        total_ngrams_sampled += sample_count
 | 
						|
 | 
						|
    overall_percentage = (total_matches / total_ngrams_sampled * 100) if total_ngrams_sampled else 0
 | 
						|
    print(f"\nTotal matched n-grams: {total_matches}/{total_ngrams_sampled} ({overall_percentage:.2f}%)")
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |