mirror of
				https://github.com/allenai/olmocr.git
				synced 2025-11-03 19:45:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			254 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Bash
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Bash
		
	
	
		
			Executable File
		
	
	
	
	
#!/bin/bash
 | 
						|
 | 
						|
set -e
 | 
						|
 | 
						|
# Parse beaker-specific arguments
 | 
						|
SKIP_DOCKER_BUILD=false
 | 
						|
PREEMPTIBLE=false
 | 
						|
EXP_NAME=""
 | 
						|
 | 
						|
# Store all arguments to pass to python command
 | 
						|
PYTHON_ARGS=()
 | 
						|
 | 
						|
while [[ $# -gt 0 ]]; do
 | 
						|
    case $1 in
 | 
						|
        --skip-docker-build)
 | 
						|
            SKIP_DOCKER_BUILD=true
 | 
						|
            shift
 | 
						|
            ;;
 | 
						|
        --preemptible)
 | 
						|
            PREEMPTIBLE=true
 | 
						|
            shift
 | 
						|
            ;;
 | 
						|
        --name)
 | 
						|
            EXP_NAME="$2"
 | 
						|
            shift 2
 | 
						|
            ;;
 | 
						|
        --help|-h)
 | 
						|
            echo "Usage: $0 [beaker-options] [grpo-training-options]"
 | 
						|
            echo ""
 | 
						|
            echo "Beaker-specific options:"
 | 
						|
            echo "  --skip-docker-build            Skip Docker build"
 | 
						|
            echo "  --preemptible                  Use preemptible instances"
 | 
						|
            echo "  --name NAME                    Experiment name (used in output directory)"
 | 
						|
            echo ""
 | 
						|
            echo "All other arguments are forwarded to python -m olmocr.train.grpo_train"
 | 
						|
            echo "Run 'python -m olmocr.train.grpo_train --help' to see available training options"
 | 
						|
            exit 0
 | 
						|
            ;;
 | 
						|
        *)
 | 
						|
            # Store all other arguments to pass to python command
 | 
						|
            PYTHON_ARGS+=("$1")
 | 
						|
            shift
 | 
						|
            ;;
 | 
						|
    esac
 | 
						|
done
 | 
						|
 | 
						|
echo "Preemptible: $PREEMPTIBLE"
 | 
						|
echo "Skip Docker Build: $SKIP_DOCKER_BUILD"
 | 
						|
echo "Arguments to forward: ${PYTHON_ARGS[@]}"
 | 
						|
 | 
						|
# Use conda environment Python if available, otherwise use system Python
 | 
						|
if [ -n "$CONDA_PREFIX" ]; then
 | 
						|
    PYTHON="$CONDA_PREFIX/bin/python"
 | 
						|
    echo "Using conda Python from: $CONDA_PREFIX"
 | 
						|
else
 | 
						|
    PYTHON="python"
 | 
						|
    echo "Warning: No conda environment detected, using system Python"
 | 
						|
fi
 | 
						|
 | 
						|
# Get version from version.py
 | 
						|
VERSION=$($PYTHON -c 'import olmocr.version; print(olmocr.version.VERSION)')
 | 
						|
echo "OlmOCR version: $VERSION"
 | 
						|
 | 
						|
# Get first 10 characters of git hash
 | 
						|
GIT_HASH=$(git rev-parse HEAD | cut -c1-10)
 | 
						|
echo "Git hash: $GIT_HASH"
 | 
						|
 | 
						|
# Get current git branch name
 | 
						|
GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD)
 | 
						|
echo "Git branch: $GIT_BRANCH"
 | 
						|
 | 
						|
# Create full image tag
 | 
						|
IMAGE_TAG="olmocr-grpo-${VERSION}-${GIT_HASH}"
 | 
						|
echo "Building Docker image with tag: $IMAGE_TAG"
 | 
						|
 | 
						|
# Build and push Docker image if not skipping
 | 
						|
if [ "$SKIP_DOCKER_BUILD" = false ]; then
 | 
						|
    echo "Building Docker image..."
 | 
						|
    docker build --platform linux/amd64 -f ./Dockerfile -t $IMAGE_TAG .
 | 
						|
    
 | 
						|
    # Push image to beaker
 | 
						|
    echo "Trying to push image to Beaker..."
 | 
						|
    if ! beaker image create --workspace ai2/oe-data-pdf --name $IMAGE_TAG $IMAGE_TAG 2>/dev/null; then
 | 
						|
        echo "Warning: Beaker image with tag $IMAGE_TAG already exists. Using existing image."
 | 
						|
    fi
 | 
						|
else
 | 
						|
    echo "Skipping Docker build as requested"
 | 
						|
fi
 | 
						|
 | 
						|
# Get Beaker username
 | 
						|
BEAKER_USER=$(beaker account whoami --format json | jq -r '.[0].name')
 | 
						|
echo "Beaker user: $BEAKER_USER"
 | 
						|
 | 
						|
# Create Python script to run beaker experiment
 | 
						|
cat << 'EOF' > /tmp/run_grpo_experiment.py
 | 
						|
import sys
 | 
						|
import shlex
 | 
						|
import os
 | 
						|
from beaker import Beaker, ExperimentSpec, TaskSpec, TaskContext, ResultSpec, TaskResources, ImageSource, Priority, Constraints, EnvVar, DataMount
 | 
						|
 | 
						|
# Get parameters from command line
 | 
						|
image_tag = sys.argv[1]
 | 
						|
beaker_user = sys.argv[2]
 | 
						|
git_branch = sys.argv[3]
 | 
						|
git_hash = sys.argv[4]
 | 
						|
preemptible = sys.argv[5] == "true"
 | 
						|
exp_name = sys.argv[6]  # Empty string if not provided
 | 
						|
# All remaining arguments are the python command arguments
 | 
						|
python_args = sys.argv[7:]
 | 
						|
 | 
						|
# Initialize Beaker client
 | 
						|
b = Beaker.from_env(default_workspace="ai2/olmocr")
 | 
						|
 | 
						|
# Build the training command
 | 
						|
commands = [
 | 
						|
    # Install dependencies
 | 
						|
    "pip install .[train]",
 | 
						|
    "pip install trl==0.22.2 wandb",
 | 
						|
    "pip install transformers==4.55.2",  # Updated for GRPO compatibility
 | 
						|
    "pip install flash-attn==2.8.0.post2 --no-build-isolation",
 | 
						|
    "pip install vllm==v0.10.1.1",
 | 
						|
    "pip install s5cmd",
 | 
						|
    
 | 
						|
    # Sync the bench data from S3
 | 
						|
    "echo 'Syncing bench data from S3...'",
 | 
						|
    "mkdir -p /data/olmOCR-bench",
 | 
						|
    "s5cmd sync 's3://ai2-oe-data/jakep/olmocr/olmOCR-bench-snapshot-082225/*' /data/olmOCR-bench/",
 | 
						|
    "s5cmd sync 's3://ai2-oe-data/jakep/grpo_data_mixes/*' /data/jakep/grpo_data_mixes/",
 | 
						|
    
 | 
						|
    # Build GRPO training command
 | 
						|
    "echo 'Starting GRPO training...'",
 | 
						|
]
 | 
						|
 | 
						|
# Check if model_name is an S3 path and handle it
 | 
						|
model_sync_commands = []
 | 
						|
modified_args = list(python_args)
 | 
						|
for i in range(len(modified_args)):
 | 
						|
    if modified_args[i] == "--model_name" and i + 1 < len(modified_args):
 | 
						|
        model_path = modified_args[i + 1].rstrip('/')
 | 
						|
        if model_path.startswith("s3://"):
 | 
						|
            # Extract checkpoint name from S3 path (last part of path)
 | 
						|
            checkpoint_name = model_path.split('/')[-1]
 | 
						|
            local_model_path = f"/data/models/{checkpoint_name}"
 | 
						|
            
 | 
						|
            # Create sync commands
 | 
						|
            model_sync_commands = [
 | 
						|
                f"echo 'Syncing model from S3: {model_path}'",
 | 
						|
                "mkdir -p /data/models",
 | 
						|
                f"s5cmd sync '{model_path}/*' '{local_model_path}/'",
 | 
						|
            ]
 | 
						|
            
 | 
						|
            # Replace S3 path with local path in arguments
 | 
						|
            modified_args[i + 1] = local_model_path
 | 
						|
        break
 | 
						|
 | 
						|
# Add model sync commands if needed
 | 
						|
commands.extend(model_sync_commands)
 | 
						|
 | 
						|
# Build the python command with forwarded arguments
 | 
						|
# Add default paths if not provided in arguments
 | 
						|
grpo_cmd = ["python -m olmocr.train.grpo_train"]
 | 
						|
 | 
						|
# Check if certain required arguments are in the provided args, add defaults if not
 | 
						|
arg_str = " ".join(modified_args)
 | 
						|
if "--train_bench_data_folder" not in arg_str:
 | 
						|
    grpo_cmd.append("--train_bench_data_folder /data/olmOCR-bench/bench_data")
 | 
						|
if "--eval_bench_data_folder" not in arg_str:
 | 
						|
    grpo_cmd.append("--eval_bench_data_folder /data/olmOCR-bench/bench_data")
 | 
						|
if "--output_dir" not in arg_str:
 | 
						|
    output_dir = "/weka/oe-training-default/jakep/olmocr-grpo-checkpoints"
 | 
						|
    # Build subdirectory based on exp_name and BEAKER_WORKLOAD_ID
 | 
						|
    beaker_workload_id = os.environ.get("BEAKER_WORKLOAD_ID")
 | 
						|
    if exp_name and beaker_workload_id:
 | 
						|
        output_dir = f"{output_dir}/{exp_name}-{beaker_workload_id}"
 | 
						|
    elif beaker_workload_id:
 | 
						|
        output_dir = f"{output_dir}/{beaker_workload_id}"
 | 
						|
    elif exp_name:
 | 
						|
        output_dir = f"{output_dir}/{exp_name}"
 | 
						|
    grpo_cmd.append(f"--output_dir {output_dir}")
 | 
						|
 | 
						|
# Add all the (possibly modified) arguments
 | 
						|
grpo_cmd.extend(modified_args)
 | 
						|
 | 
						|
# Add the GRPO command to the commands list
 | 
						|
commands.append(" ".join(grpo_cmd))
 | 
						|
 | 
						|
# Extract model name from arguments if provided (for description)
 | 
						|
model_name = "Unknown"
 | 
						|
for i, arg in enumerate(modified_args):
 | 
						|
    if arg in ["--model_name", "--model"]:
 | 
						|
        if i + 1 < len(modified_args):
 | 
						|
            model_name = modified_args[i + 1]
 | 
						|
            break
 | 
						|
 | 
						|
# Build task spec
 | 
						|
task_spec = TaskSpec(
 | 
						|
    name="olmocr-grpo-training",
 | 
						|
    image=ImageSource(beaker=f"{beaker_user}/{image_tag}"),
 | 
						|
    command=[
 | 
						|
        "bash", "-c",
 | 
						|
        " && ".join(commands)
 | 
						|
    ],
 | 
						|
    context=TaskContext(
 | 
						|
        priority=Priority.normal,
 | 
						|
        preemptible=preemptible,
 | 
						|
    ),
 | 
						|
    resources=TaskResources(
 | 
						|
        gpu_count=1,
 | 
						|
        shared_memory="10GiB"
 | 
						|
    ),
 | 
						|
    constraints=Constraints(cluster=["ai2/titan-cirrascale"]),
 | 
						|
    result=ResultSpec(path="/noop-results"),
 | 
						|
    env_vars=[
 | 
						|
        EnvVar(name="LOG_FILTER_TYPE", value="local_rank0_only"),
 | 
						|
        EnvVar(name="OMP_NUM_THREADS", value="8"),
 | 
						|
        EnvVar(name="BEAKER_USER_ID", value=beaker_user),
 | 
						|
        EnvVar(name="AWS_ACCESS_KEY_ID", secret="ALLENNLP_AWS_ACCESS_KEY_ID"),
 | 
						|
        EnvVar(name="AWS_SECRET_ACCESS_KEY", secret="ALLENNLP_AWS_SECRET_ACCESS_KEY"),
 | 
						|
        EnvVar(name="WANDB_API_KEY", secret="JAKE_WANDB_API_KEY"),
 | 
						|
    ],
 | 
						|
    datasets=[
 | 
						|
        DataMount.new(mount_path="/weka/oe-data-default", weka="oe-data-default"),
 | 
						|
        DataMount.new(mount_path="/weka/oe-training-default", weka="oe-training-default"),
 | 
						|
    ]
 | 
						|
)
 | 
						|
 | 
						|
# Create experiment spec
 | 
						|
experiment_spec = ExperimentSpec(
 | 
						|
    description=f"OlmOCR GRPO Training - Model: {model_name}, Branch: {git_branch}, Commit: {git_hash}",
 | 
						|
    budget="ai2/oe-base",
 | 
						|
    tasks=[task_spec],
 | 
						|
)
 | 
						|
 | 
						|
# Create the experiment
 | 
						|
experiment = b.experiment.create(spec=experiment_spec, workspace="ai2/olmocr")
 | 
						|
print(f"Created GRPO training experiment: {experiment.id}")
 | 
						|
print(f"View at: https://beaker.org/ex/{experiment.id}")
 | 
						|
EOF
 | 
						|
 | 
						|
# Run the Python script to create the experiment
 | 
						|
echo "Creating Beaker GRPO experiment..."
 | 
						|
$PYTHON /tmp/run_grpo_experiment.py \
 | 
						|
    "$IMAGE_TAG" \
 | 
						|
    "$BEAKER_USER" \
 | 
						|
    "$GIT_BRANCH" \
 | 
						|
    "$GIT_HASH" \
 | 
						|
    "$PREEMPTIBLE" \
 | 
						|
    "$EXP_NAME" \
 | 
						|
    "${PYTHON_ARGS[@]}"
 | 
						|
 | 
						|
# Clean up temporary file
 | 
						|
rm /tmp/run_grpo_experiment.py
 | 
						|
 | 
						|
echo "GRPO training experiment submitted successfully!" |