olmocr/pdelfin/data/runpipeline.py
Jake Poznanski a90feda42f bugfixes
2024-10-09 20:20:06 +00:00

231 lines
7.7 KiB
Python

import os
import glob
import random
import subprocess
import base64
import argparse
import boto3
import json
from pypdf import PdfReader
from tqdm import tqdm
from typing import Generator
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
from urllib.parse import urlparse
from pdelfin.data.renderpdf import render_pdf_to_base64png
from pdelfin.prompts import build_finetuning_prompt
from pdelfin.prompts.anchor import get_anchor_text
from pdelfin.filter import PdfFilter
import logging
logging.getLogger("pypdf").setLevel(logging.ERROR)
pdf_filter = PdfFilter()
def build_page_query(local_pdf_path: str, pretty_pdf_path: str, page: int) -> dict:
image_base64 = render_pdf_to_base64png(local_pdf_path, page, 1024)
anchor_text = get_anchor_text(local_pdf_path, page, pdf_engine="pdfreport")
return {
"custom_id": f"{pretty_pdf_path}-{page}",
"chat_messages": [
{
"role": "user",
"content": [
{"type": "text", "text": build_finetuning_prompt(anchor_text)},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}
],
}
],
"temperature": 0.1,
"max_tokens": 6000,
}
def fetch_s3_file(s3_url: str, local_path: str) -> str:
parsed = urlparse(s3_url)
bucket_name = parsed.netloc
key = parsed.path.lstrip('/')
s3 = boto3.client('s3')
s3.download_file(bucket_name, key, local_path)
return local_path
def process_pdf(pdf_path: str, no_filter: bool) -> Generator[dict, None, None]:
if pdf_path.startswith("s3://"):
local_pdf_path = os.path.join("/tmp", os.path.basename(pdf_path))
fetch_s3_file(pdf_path, local_pdf_path)
else:
local_pdf_path = pdf_path
if (not no_filter) and pdf_filter.filter_out_pdf(local_pdf_path):
print(f"Skipping {local_pdf_path} due to common filter")
return []
pretty_pdf_path = pdf_path
pdf = PdfReader(local_pdf_path)
num_pages = len(pdf.pages)
sample_pages = list(range(1, num_pages + 1))
result = []
for page in sample_pages:
try:
query = build_page_query(local_pdf_path, pretty_pdf_path, page)
result.append(query)
except Exception as e:
print(f"Error processing page {page} of {pdf_path}: {e}")
return result
def is_glob_pattern(path: str) -> bool:
return any(char in path for char in ['*', '?', '[', ']'])
def expand_s3_glob(s3_glob: str) -> list:
parsed = urlparse(s3_glob)
bucket_name = parsed.netloc
prefix = os.path.dirname(parsed.path.lstrip('/')).rstrip('/') + "/"
pattern = os.path.basename(parsed.path)
s3 = boto3.client('s3')
paginator = s3.get_paginator('list_objects_v2')
page_iterator = paginator.paginate(Bucket=bucket_name, Prefix=prefix)
matched_files = []
for page in page_iterator:
for obj in page.get('Contents', []):
key = obj['Key']
if key.endswith('.pdf') and glob.fnmatch.fnmatch(key, prefix + pattern):
matched_files.append(f"s3://{bucket_name}/{key}")
return matched_files
def main():
parser = argparse.ArgumentParser(
description="Given a bunch of PDFs, prepares a mise/birr workflow to run them through a conversion mechanism"
)
parser.add_argument(
"pdf_paths",
nargs='*',
help=(
"List of PDF paths to process. If a single argument contains glob patterns (e.g., *.pdf or s3://bucket/pdfs/*.pdf), "
"it will be expanded accordingly."
)
)
parser.add_argument(
"--path_list",
type=str,
help="Path to a file containing paths to PDFs, one per line."
)
parser.add_argument(
"--max_size_mb",
type=int,
default=250,
help="Max number of MBs of entries to put in each birr workitem"
)
parser.add_argument(
"--no_filter",
action="store_true",
help="Disables the basic spam/language filtering so that ALL pdfs listed are used"
)
parser.add_argument(
"--output",
type=str,
default="mise_batch_data",
help="Output destination"
)
args = parser.parse_args()
pdf_paths = []
# Load PDF paths from positional arguments or path_list
if args.pdf_paths:
if len(args.pdf_paths) == 1 and is_glob_pattern(args.pdf_paths[0]):
glob_path = args.pdf_paths[0]
if glob_path.startswith("s3://"):
# Handle S3 globbing
expanded_paths = expand_s3_glob(glob_path)
pdf_paths.extend(expanded_paths)
else:
# Handle local filesystem globbing
expanded_paths = glob.glob(glob_path, recursive=True)
pdf_paths.extend(expanded_paths)
else:
# Treat positional arguments as list of PDF paths
pdf_paths.extend(args.pdf_paths)
if args.path_list:
with open(args.path_list, 'r') as f:
for line in f:
path = line.strip()
if path:
pdf_paths.append(path)
# Remove duplicates and shuffle
pdf_paths = list(set(pdf_paths))
random.shuffle(pdf_paths)
print(f"Loaded and shuffled {len(pdf_paths)} paths to use.")
# Rest of the code remains the same
cur_file_num = 0
output_dir = args.output
max_file_size = args.max_size_mb * 1024 * 1024
cur_file_size = 0
cur_file_path = os.path.join(output_dir, f"output_{cur_file_num}.jsonl")
# Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Open the first file for writing
cur_file = open(cur_file_path, 'w')
# Counter to track PDFs that produce at least one output
pdfs_with_output = 0
# Using ProcessPoolExecutor to process files concurrently
with ProcessPoolExecutor() as executor:
futures = []
with tqdm(desc="Processing PDFs", leave=False, total=len(pdf_paths)) as pb:
for pdf_path in pdf_paths:
futures.append(executor.submit(process_pdf, pdf_path, args.no_filter))
for future in as_completed(futures):
try:
request_results = future.result() # Get the result from the process
if request_results:
pdfs_with_output += 1 # Increment if there's at least one result
for request_obj in request_results:
request_json = json.dumps(request_obj)
request_size = len(request_json.encode('utf-8')) # Calculate size in bytes
# Check if the current request can fit in the current file
if cur_file_size + request_size > max_file_size:
# Close the current file and create a new one
cur_file.close()
cur_file_num += 1
cur_file_path = os.path.join(output_dir, f"output_{cur_file_num}.jsonl")
cur_file = open(cur_file_path, 'w')
cur_file_size = 0 # Reset file size
# Write the JSON entry to the file
cur_file.write(request_json)
cur_file.write("\n")
cur_file_size += request_size
pb.update(1)
except Exception as e:
print(f"Error processing a PDF: {str(e)}")
# Close the last open file
cur_file.close()
# Print the number of PDFs that resulted in at least one output
print(f"Number of sampled PDFs that produced at least one output: {pdfs_with_output}")
if __name__ == "__main__":
main()