mirror of
				https://github.com/allenai/olmocr.git
				synced 2025-11-04 03:56:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			236 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			236 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import bisect
 | 
						|
from typing import Type
 | 
						|
 | 
						|
import regex as re
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
from .aligners import AlignerRegistry, BaseAligner
 | 
						|
from .registry import BaseRegistry
 | 
						|
from .segmenters import BaseSegmenter, SegmenterRegistry
 | 
						|
 | 
						|
 | 
						|
class TextMetricRegistry(BaseRegistry[Type["BaseTextMetric"]]):
 | 
						|
    """A registry for text metrics."""
 | 
						|
 | 
						|
 | 
						|
class BaseTextMetric:
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        super().__init__()
 | 
						|
 | 
						|
    def compute(self, gold: str, pred: str) -> float:
 | 
						|
        raise NotImplementedError()
 | 
						|
 | 
						|
    def batch_compute(self, golds: list[str], preds: list[str]) -> list[float]:
 | 
						|
        it = tqdm(
 | 
						|
            zip(golds, preds),
 | 
						|
            total=min(len(golds), len(preds)),
 | 
						|
            desc=type(self).__name__,
 | 
						|
            unit="samples",
 | 
						|
            unit_scale=True,
 | 
						|
        )
 | 
						|
        return [self.compute(gold, pred) for gold, pred in it]
 | 
						|
 | 
						|
 | 
						|
class BaseTextAlignMetric(BaseTextMetric):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        segmenter: str | BaseSegmenter,
 | 
						|
        aligner: str | BaseAligner = "hirschberg",
 | 
						|
        aligner_kwargs: dict = {},
 | 
						|
        segmenter_kwargs: dict = {},
 | 
						|
        gap_token: str = "▓",
 | 
						|
        *args,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        if isinstance(segmenter, str):
 | 
						|
            self.segmenter = SegmenterRegistry.get(segmenter)(segmenter, **segmenter_kwargs)
 | 
						|
        else:
 | 
						|
            self.segmenter = segmenter
 | 
						|
 | 
						|
        if isinstance(aligner, str):
 | 
						|
            self.aligner = AlignerRegistry.get(aligner)(aligner, **aligner_kwargs)
 | 
						|
        else:
 | 
						|
            self.aligner = aligner
 | 
						|
 | 
						|
        self.gap_token = gap_token
 | 
						|
 | 
						|
    def segment(self, seq_a_tokens: list[str], seq_b_tokens: list[str]) -> list[tuple[list[str], list[str]]]:
 | 
						|
        return [(seq_a_tokens, seq_b_tokens)]
 | 
						|
 | 
						|
    def align(self, seq_a_tokens: list[str], seq_b_tokens: list[str]) -> tuple[list[str], list[str]]:
 | 
						|
        return self.aligner.align(seq_a_tokens, seq_b_tokens)
 | 
						|
 | 
						|
    def tokenize(self, text: str) -> list[str]:
 | 
						|
        return [w for w in re.split(r"(\p{P}+|\s+)", text) if w]
 | 
						|
 | 
						|
    def compute(self, gold: str, pred: str) -> float:
 | 
						|
        raise NotImplementedError()
 | 
						|
 | 
						|
 | 
						|
@TextMetricRegistry.add("document_edit_similarity")
 | 
						|
class DocumentEditSimilarity(BaseTextAlignMetric):
 | 
						|
    def _score_aligned(self, aligned_gold_tokens: list[str], aligned_pred_tokens: list[str]) -> float:
 | 
						|
        insertions = deletions = matches = substitutions = 0.0
 | 
						|
        for gold_symbol, pred_symbol in zip(aligned_gold_tokens, aligned_pred_tokens):
 | 
						|
            if gold_symbol == self.gap_token:
 | 
						|
                insertions += 1
 | 
						|
            elif pred_symbol == self.gap_token:
 | 
						|
                deletions += 1
 | 
						|
            elif gold_symbol == pred_symbol:
 | 
						|
                matches += 1
 | 
						|
            else:
 | 
						|
                substitutions += 1
 | 
						|
 | 
						|
        if total := insertions + deletions + matches + substitutions:
 | 
						|
            return matches / total
 | 
						|
        return 0.0
 | 
						|
 | 
						|
    def compute(self, gold: str, pred: str) -> float:
 | 
						|
        gold_tokens = self.tokenize(gold)
 | 
						|
        pred_tokens = self.tokenize(pred)
 | 
						|
        aligned_gold_tokens, aligned_pred_tokens = self.align(gold_tokens, pred_tokens)
 | 
						|
        return self._score_aligned(aligned_gold_tokens, aligned_pred_tokens)
 | 
						|
 | 
						|
 | 
						|
def find_align_gaps(aligned_text: list[str], gap_token: str = "▓", gap_threshold: int = 3) -> list[int]:
 | 
						|
    consecutive_gaps_counter = 0
 | 
						|
    above_threshold_locs: list[int] = []
 | 
						|
 | 
						|
    for aligned_pos, symbol in enumerate(aligned_text):
 | 
						|
        if symbol == gap_token:
 | 
						|
            consecutive_gaps_counter += 1
 | 
						|
        else:
 | 
						|
            consecutive_gaps_counter = 0
 | 
						|
 | 
						|
        if consecutive_gaps_counter >= gap_threshold:
 | 
						|
            above_threshold_locs.append(aligned_pos)
 | 
						|
            consecutive_gaps_counter = 0
 | 
						|
 | 
						|
    return above_threshold_locs
 | 
						|
 | 
						|
 | 
						|
def make_unaligned_text(tokens: list[str], gap_token: str = "▓") -> str:
 | 
						|
    return "".join(symbol for symbol in tokens if symbol != gap_token)
 | 
						|
 | 
						|
 | 
						|
def find_sentences(
 | 
						|
    tokens: list[str],
 | 
						|
    sentences: list[str],
 | 
						|
    gap_token: str = "▓",
 | 
						|
):
 | 
						|
    matches: list[tuple[int, int]] = []
 | 
						|
 | 
						|
    original_text = ""
 | 
						|
    original: list[int] = []
 | 
						|
    original_to_aligned: list[int] = []
 | 
						|
 | 
						|
    for i, token in enumerate(tokens):
 | 
						|
        if token != gap_token:
 | 
						|
            original_text += token
 | 
						|
            original.append(len(original_text))
 | 
						|
            original_to_aligned.append(i)
 | 
						|
 | 
						|
    matches = []
 | 
						|
    for sentence in sentences:
 | 
						|
        start_pos = original_text.find(sentence)
 | 
						|
        if start_pos < 0:
 | 
						|
            continue
 | 
						|
 | 
						|
        end_pos = start_pos + len(sentence)
 | 
						|
        start_token = original_to_aligned[bisect.bisect_left(original, start_pos)]
 | 
						|
        end_token = original_to_aligned[min(bisect.bisect_right(original, end_pos), len(original) - 1)]
 | 
						|
        matches.append((start_token, end_token))
 | 
						|
 | 
						|
    return matches
 | 
						|
 | 
						|
 | 
						|
def merge_spans(spans: list[tuple[int, int]]) -> list[tuple[int, int]]:
 | 
						|
    if not spans:
 | 
						|
        return []
 | 
						|
 | 
						|
    # Sort spans based on start position
 | 
						|
    sorted_spans = sorted(spans, key=lambda x: x[0])
 | 
						|
 | 
						|
    merged = [sorted_spans[0]]
 | 
						|
 | 
						|
    for current in sorted_spans[1:]:
 | 
						|
        last = merged[-1]
 | 
						|
 | 
						|
        # If current span overlaps with last merged span, update the end of last span
 | 
						|
        if current[0] <= last[1]:
 | 
						|
            merged[-1] = (last[0], max(last[1], current[1]))
 | 
						|
        else:
 | 
						|
            merged.append(current)
 | 
						|
 | 
						|
    return merged
 | 
						|
 | 
						|
 | 
						|
def make_sentences_around_gaps(sent_locs: list[tuple[int, int]], gaps_locs: list[int], window: int):
 | 
						|
    sent_start_only = [start for start, _ in sent_locs]
 | 
						|
 | 
						|
    sentences_with_gaps = []
 | 
						|
 | 
						|
    # collect all sentences that are around the gaps
 | 
						|
    for gap in gaps_locs:
 | 
						|
        start_idx = bisect.bisect_left(sent_start_only, gap)
 | 
						|
        fwd_window = max(0, start_idx - window)
 | 
						|
        bwd_window = min(len(sent_locs) - 1, start_idx + window)
 | 
						|
        sentences_with_gaps.append((sent_locs[fwd_window][0], sent_locs[bwd_window][-1]))
 | 
						|
 | 
						|
    # merge overlapping sentences
 | 
						|
    sentences_with_gaps = merge_spans(sentences_with_gaps)
 | 
						|
 | 
						|
    return sentences_with_gaps
 | 
						|
 | 
						|
 | 
						|
@TextMetricRegistry.add("paragraph_edit_similarity")
 | 
						|
class ParagraphEditSimilarity(DocumentEditSimilarity):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        segmenter: str | BaseSegmenter,
 | 
						|
        aligner: str | BaseAligner = "hirschberg",
 | 
						|
        aligner_kwargs: dict = {},
 | 
						|
        segmenter_kwargs: dict = {},
 | 
						|
        gap_token: str = "▓",
 | 
						|
        gap_threshold: int = 3,
 | 
						|
        sent_window: int = 1,
 | 
						|
        *args,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        super().__init__(
 | 
						|
            segmenter=segmenter,
 | 
						|
            aligner=aligner,
 | 
						|
            aligner_kwargs=aligner_kwargs,
 | 
						|
            segmenter_kwargs=segmenter_kwargs,
 | 
						|
            gap_token=gap_token,
 | 
						|
        )
 | 
						|
        self.gap_threshold = gap_threshold
 | 
						|
        self.sent_window = sent_window
 | 
						|
 | 
						|
    def segment(self, seq_a_tokens: list[str], seq_b_tokens: list[str]) -> list[tuple[list[str], list[str]]]:
 | 
						|
        all_spans = []
 | 
						|
 | 
						|
        for seq_tokens in (seq_a_tokens, seq_b_tokens):
 | 
						|
            text = make_unaligned_text(tokens=seq_tokens, gap_token=self.gap_token)
 | 
						|
            sentences = self.segmenter.segment(text)
 | 
						|
 | 
						|
            sent_locs = find_sentences(tokens=seq_tokens, sentences=sentences, gap_token=self.gap_token)
 | 
						|
            gaps_locs = find_align_gaps(aligned_text=seq_tokens, gap_token=self.gap_token, gap_threshold=3)
 | 
						|
 | 
						|
            sentences_with_gaps = make_sentences_around_gaps(sent_locs=sent_locs, gaps_locs=gaps_locs, window=self.sent_window)
 | 
						|
            all_spans.extend(sentences_with_gaps)
 | 
						|
 | 
						|
        return [(seq_a_tokens[start:end], seq_b_tokens[start:end]) for start, end in merge_spans(all_spans)]
 | 
						|
 | 
						|
    def compute(self, gold: str, pred: str) -> float:
 | 
						|
        gold_tokens = self.tokenize(gold)
 | 
						|
        pred_tokens = self.tokenize(pred)
 | 
						|
        aligned_gold_tokens, aligned_pred_tokens = self.align(gold_tokens, pred_tokens)
 | 
						|
 | 
						|
        scores = []
 | 
						|
        for gold_segment, pred_segment in self.segment(aligned_gold_tokens, aligned_pred_tokens):
 | 
						|
            score = self._score_aligned(gold_segment, pred_segment)
 | 
						|
            scores.append(score)
 | 
						|
 | 
						|
        return sum(scores) / len(scores) if scores else 1.0
 |